daigai

Well-Known Member
LINK TẢI LUẬN VĂN MIỄN PHÍ CHO AE KET-NOI
Design and manufacture of an automatic Pet bottle supplying machine for water bottling production lines
Abstract
The design and manufacture of an automatic PET bottle supplying machine for water bottling production lines. The objective is to optimize and enhance the efficiency of the bottle packaging process by integrating automatic mechanisms for bottle supply. The machine is designed to handle PET bottles smoothly, ensuring continuous and accurate bottle supply to the water bottling production line.
The design includes key features such as conveyor systems, bottle sorting, and controlled output mechanisms, all integrated to support continuous and accurate bottle supplying processes. The system is equipped with sensors and controllers to detect and
respond to variations in bottle quantity, ensuring flexibility to meet different production
requirements.
Additionally, the automatic PET bottle supplying machine is designed with user- friendly controls, enabling operators to easily monitor and adjust machine settings. The integration of safety features ensures a safe working environment.
This research contributes to the field of industrial automation by presenting an innovative solution to optimize the efficiency and accuracy of the bottle supplying process in water bottling production lines. The proposed machine offers a reliable and flexible solution for businesses looking to optimize their production processes in the bottling industry.
2
Contents
Chapter 1: Introduction......................................................................................... 11
1.1 Introduction about project .................................................................................... 11 1.1.1 Introduction about PET bottles...................................................................... 11 1.2 Introduction about machine.................................................................................. 13 1.2.1 Benefit of the machine ..................................................................................... 13 1.3 Research target.......................................................................................................14 1.4 Subject and scope of the research.........................................................................14 1.4.1 Research subject...............................................................................................14 1.4.2 Research Scope................................................................................................. 14 1.5 Research method .................................................................................................... 15 1.5.1 Methodological basis ....................................................................................... 15 1.5.2 Specific research methods...............................................................................15 1.6 Graduation project structures .............................................................................. 16
Chapter 2: THEORETICAL BASIS .................................................................... 17
2.1 The demand for the automatic bottle supplying machine..................................17 2.2 The current status of the automatic bottle supplying machine ......................... 17 2.3 Analysis and Selection of Design Options ............................................................ 19
2.3.1 Overview analysis of the automatic bottle supplying machine ................... 19 2.3.2 Choosing the bottle detection sensor .............................................................. 23 2.3.3 Bottle Conveying System................................................................................. 26
Chapter 3: Design and calculation ........................................................................ 28
3.1 Main parts of the machine..................................................................................... 28 3.2 Calculation and selection of motor for conveyor belt 1......................................35 3.2.1 Motor selectiom for conveyor belt 1 .................................................................. 35
3.2.2 Calculation of chain transmission ratio.........................................................37
3.3 Calculation and Selection of Motor for Rotary Table ........................................ 41
3.3.1 Motor Selection for Rotary Table .................................................................. 41
3.3.2 Calculation of belt transmission ratio............................................................43
3.4 Calculation and motor selection for conveyor belt 2 .......................................... 44
3.4.1 Selection motor.................................................................................................44 3.4.2 Calculation of transmission ratio ................................................................... 46
3

3.5 Calculation and durability test ............................................................................. 47 Chapter 4: Control System Design ....................................................................... 51
4.1 Electrical System Design ....................................................................................... 51
4.1.1 Requirements for the Electrical System. ....................................................... 51
4.1.2 Preliminary Electrical System Design ........................................................... 51
4.2 Components Used...................................................................................................52
4.2.1 CB 2P 32A PS45N/C2032 Sino : ..................................................................... 52 4.2.2 The power supply 24V 5A ............................................................................... 53 4.2.3 Variable Frequency Drive VFD-M 0.4KW Delta ......................................... 54 4.2.4 PLC DVP40ES2 ............................................................................................... 56 4.2.5 HMI SAMKOON SK-102HS..........................................................................57 4.2.6 Sensor BJ300-DDT- NPN................................................................................58 4.2.7 Sensor CDR-30X..............................................................................................60 4.2.8 Motor single phase USM-402W......................................................................61 4.2.9 Blower..............................................................................................................61
4.3. Electrical system installation................................................................................ 62
4.3.1 Design Objectives.............................................................................................62 4.3.2 Electrical Cabinet Drawing ............................................................................ 62 4.3.3 Wiring ............................................................................................................... 65 4.3.4 Result................................................................................................................. 65
4.4 Building Flowchart and Block Diagram of systems............................................ 68 4.4.1 General flowchart................................................................................................ 68 4.4.2 Turningtable control algorithm flowchart. ................................................... 69 4.4.3 System operating diagram. ............................................................................. 70 4.5.1 Scope of Study .................................................................................................. 71 4.5.2 Introduction...................................................................................................... 71 4.5.4 Communication standard ............................................................................... 79 4.5.6 Wiring connect ................................................................................................. 80 4.5.8 Registers of the Devices. .................................................................................. 83 4.6 Designing the User Interface HMI. ...................................................................... 84 4.6.1 User Interface Design for the Project. ........................................................... 84
Chapter 5 Experiments and analysis .................................................................... 88
4

5.1 Analysis the machine.............................................................................................. 88 5.2 Preparation of samples and experimental methods............................................92 5.3 Evaluation ............................................................................................................... 97 5.4 Development ........................................................................................................... 97
5

LIST OF FIGURES
Figure 1. 1: History of PET ............................................................................................... 11 Figure 1. 2: Dimension of bottle........................................................................................ 12 Figure 1. 3: Bottles are using............................................................................................. 12 Figure 1. 4: Picture of supply machine..............................................................................13 Figure 2.1: Bottle supplying machines utilizing Delta robot arms.................................... 17 Figure 2.2: Bottle supplying machines utilizing centrifugal method ................................ 18 Figure 2.3: Bottle unscrambler using a hook mechanism ................................................. 19 Figure 2. 4: The structure of the tank ................................................................................ 20 Figure 2. 5: The structure of the turning table...................................................................20 Figure 2. 6: The structure of the flipping mechanism ....................................................... 21 Figure 2.7: General diagram of the machine ..................................................................... 21 Figure 2.8: Different types of optical sensors ................................................................... 24 Figure 2.9: Through-beam sensors .................................................................................... 24 Figure 2.10: Retro-reflective sensors ................................................................................ 25 Figure 2.11: Diffuse reflective optical sensor ................................................................... 25 Figure 2.12: Roller Conveyor ............................................................................................ 26 Figure 2.13: PVC Conveyor Belt ...................................................................................... 27 Figure 3.1: 3D Design of turning table..............................................................................28 Figure 3.2: Transmission of turning table ......................................................................... 29 Figure 3.3: 3D of turning table .......................................................................................... 30 Figure 3.4: Actual turning table......................................................................................... 30 Figure 3.5: 3D Design tank and conveyor 1......................................................................31 Figure 3.6: Chain links transmission ................................................................................. 32 Figure 3.7: Actual tank and conveyor 1 ............................................................................ 32 Figure 3.8: 3D Design of Conveyor 2 ............................................................................... 33 Figure 3.9: 3D in front of Conveyor 2...............................................................................34 Figure 3.10: Actual conveyor 2 ......................................................................................... 34 Figure 3.11: 3D Design of machine .................................................................................. 35 Figure 3.13: Motor single phase 4IK25GN-C...................................................................37
Figure 3.14: Roller chains ................................................................................................. 38 6

Figure 3.15: Dimension of chain links .............................................................................. 39 Figure 3.16: Sprockets.......................................................................................................41 Figure 3.17: Motor 3 phases BHI62SMT – G2.................................................................43 Figure 3.18:Belt STD 105-S5M ........................................................................................ 44 Figure 3.19: DCM50-775 24VDC 45 rPhần mềm ........................................................................ 46 Figure 3.20: Curoa GT2 .................................................................................................... 47 Figure 4.1: Electrical System Design ................................................................................ 51 Figure 4.2: Circuit breaker ................................................................................................ 52 Figure 4.3: Power supply 24V 5A ..................................................................................... 54 Figure 4.4: Variable Frequency Drive VFD-M 0.4KW Delta ..........................................54 Figure 4.5: PLC DVP40ES2.............................................................................................. 56 Figure 4.6:HMI SAMKOON SK-102HS .......................................................................... 57 Figure 4.7:Sensor BJ300-DDT- NPN................................................................................ 59 Figure 4.8: Sensor CDR-30X ............................................................................................ 60 Figure 4.9: Motor USM-402W .......................................................................................... 61
Figure 4.10:
Figure 4.11:
Figure 4.12:
Figure 4.13:
Figure 4.14:
Figure 4.15:
Figure 4.16:
Figure 4.17:
Figure 4.18:
Figure 4.19:
Figure 4.20:Introduce Modbus communication mode ...................................................... 72 Figure 4.21:Communication frames according to Modbus RTU standard ....................... 73 Figure 4.22:Communication frames according to Modbus RTU standard ....................... 73 Figure 4.23:Structure of Modbus RTU frame. .................................................................. 73 Figure 4.24:Structure of Modbus RTU frame. .................................................................. 74 Figure 4.25:An example of a TCP/IP model ..................................................................... 75
Blower .......................................................................................................... 62 Control circuit diagram ................................................................................. 64 Motor circuit diagram ................................................................................... 64 An overview image of the electrical cabinet ................................................ 65 The front face of the electrical cabinet ......................................................... 66 Images of the components inside the electrical cabinet................................66 Behind HMI .................................................................................................. 67 General flowchart.......................................................................................... 68 Turningtable control algorithm flowchart..................................................... 70 System operating diagram............................................................................. 71
7

Figure 4.26:The hybrid TCP/IP RTU model.....................................................................76
Figure 4.27:The basic structure of Modbus RTU communication....................................76
Figure 4.28:Modbus TCP/IP communication structure .................................................... 77
Figure 4.29:Modbus TCP/IP communication ................................................................... 77
Figure 4.30:Binary to hexadecimal conversion table ........................................................ 77
Figure 4.31: The communication frame structure of the Modbus ASCII protocol...........78
Figure 4.32:The communication wiring diagram..............................................................79
Figure 4.33:Connection diagram for RS485 to PLC DVP40ES2 ..................................... 80
Figure 4.34: Configuration of connection ports for different cable standards for Samkoon 102HS HMI ....................................................................................................................... 80
Figure 4.35:Wiring diagram for communication devices ................................................. 80 Figure 4.36: Communication roles of devices................................................................... 81 Figure 4.37: Configuring the connection port of the PLC ................................................ 82 Figure 4.38:pLC communication configuration................................................................ 82 Figure 4.39: HMI connection port configuration .............................................................. 83 Figure 4.40: The main interface sheet of the group's HMI ............................................... 85 Figure 4.41: The manual mode sheet of the group's HMI interface..................................85 Figure 4.42: The auto mode sheet of the group's HMI interface.......................................87 Figure 5. 1: Actual of our Machine ................................................................................... 88 Figure 5. 2: Conveyor 1’s working.................................................................................... 89 Figure 5. 3: Turning table's working ................................................................................. 90 Figure 5. 4: Conveyor 2 's working ................................................................................... 91 Figure 5. 5: Our team and machine ................................................................................... 92 Figure 5. 6: The result of case 1 ........................................................................................ 93 Figure 5. 7: The problem at the output of turn table ......................................................... 94 Figure 5. 8: The result of case 2 ........................................................................................ 95 Figure 5. 9: The result of case 3 ........................................................................................ 96
8

LIST OF TABLES
Table 2. 1: Explain for diagram......................................................................................... 22 Table 4.1: Specific of Blower............................................................................................61 Table 4.2: the advantages and disadvantages of the Modbus............................................78 Table 4. 3: Parameter of VFD ........................................................................................... 81 Table 4.4: Configuration of the HMI connection port ...................................................... 84 Table 5. 1: Specific of machine ......................................................................................... 88 Table 5. 2: The result of case 1..........................................................................................93 Table 5. 3: The result of case 2..........................................................................................94 Table 5. 4: The result of case 3..........................................................................................96
9

LIST OF ABBREVIATION
PLC Programmable Logic Controller HMI Human Machine Interface
DCS Distributed Control System RTU Remote Terminal Unit
TCP/IP Transmission Control Protocol/ Internet Protocol UART Universal Asynchronous Receiver/Transmitter CRC Cyclic Redundancy Check
RS485 Recommended Standard 485
RS232 Recommended Standard 232 LCR Longitudinal Redundancy Check RJ11 Registered Jack 11
DP9 D-Subminiature 9-pin
RX Recieve
TX Transmit
PR Parameter
VFD Variable Frequency Drive
ASCII
American Standard Code for Information
Interachange
7E1
The transmission frame has 7 bits including 1 Even bit
10

Chapter 1: Introduction
1.1 Introduction about project
1.1.1 Introduction about PET bottles
Chemists at DuPont company first created Polyethylene Terephthalate (PET) in 1941 while experimenting with polymers. By the late 1950s, researchers had figured out how to stretch a thin sheet of PET resin to create PET film, which is widely used today in applications such as video and photographic film, X-rays, and more. In the early 1970s, this technology was further developed to allow for the blow molding of PET bottles, resulting in rigid, lightweight, and shatter-resistant containers. In 1973, a DuPont scientist
named Nathaniel Wyeth patented the first finished PET plastic bottle, which quickly gained market acceptance. In 1977, the first PET bottle was recycled. Perrier and Evian were among the first companies to capitalize on the bottled water trend, followed by PepsiCo with its Aquafina brand in 1994. Coke and Dasani followed suit in 1999, both using purified tap water. From 1994 to 2017, the revenue from bottled water in the United States increased by 284%, according to data from the Beverage Marketing Corp.
Polyethylene Terephthalate (PET) plastic bottles are a type of polyester resin commonlyused to produce containers for water, beverages, oils, and many other products.
Properties of PET bottles:
Figure 1. 1: History of PET
• Lightweight: PET plastic bottles are very lightweight, making them convenient for transportation and everyday use. PET is often transparent, allowing consumers to
11

see the contents inside, which helps promote brand visibility and facilitates product
identification
• Heat Resistance: PET has relatively high heat resistance, making it suitable for
storing hot liquids such as hot water or beverages with high temperatures.
• Chemical Resistance: PET typically exhibits resistance to corrosion and the effects
of many chemicals.
• Durability: PET is durable and rigid, helping to protect the contents inside from
external factors.
• Recyclability: PET is one of the most recyclable plastics. Recycling PET bottles
helps reduce plastic waste and alleviates pressure on natural resources.
PET plastic bottles are a popular choice for packaging water, soft drinks, and other beverages.
Dimension of bottle we used in this machine:
Figure 1.2: Dimension of bottle
Figure 1.3: Bottles are using
12

1.2 Introduction about machine 1.2.1 Benefit of the machine
The automatic bottle supplying machine is designed to connect various stages in the filling and capping system, serving industries such as soft drink and beverage production, bottled water production, pharmaceuticals, etc.
The system integrates the processes of filling, capping, and automatic box packing. A central control unit typically utilizes a Programmable Logic Controller (PLC). Each stage operates automatically, with labor only involved in some control, input, and output stages without the need to manually arrange bottles. The automatic bottle supplying
machine arranges bottles efficiently through conveyor belts and flipping mechanisms. The results bring several advantages:
• Increasing Productivity and reducing Cost: The overall output achieves higher productivity compared to manual operations. The system can fill thousands of bottles per hour, depending on the bottle's capacity..
• Reduced Labor Costs: The automated filling system requires fewer and simpler tasks, leading to a reduced need for labor, depending on the bottle's capacity.
• Safety: Automating operations and shifting operators from active participation to supervisory roles make the work environment safer.
• Improved Product Quality: The filling system not only operates faster than manual methods but also produces more consistently and accurately according to strict product requirements.
Application Scope:
This system is applicable to manufacturing facilities producing dishwashing liquid, soft drinks, purified water, beer, etc. It is suitable for liquid or dense liquid products with high requirements for hygiene and sterilization
Figure 1.4: Picture of supply machine
13

1.3 Research target
Through surveys and practical experiences, along with personal practical experience in creating a reliable and efficient bottle supply system, ensuring that the output bottles are positioned correctly, maintaining a stable bottle count, and eliminating bottle jams.
Several key steps:
• Calculation and design proposal.
• Selecting motor and detail.
• Electrical circuit design and 3D modeling.
• Prototype creation.
• Testing.
1.4 Subject and scope of the research 1.4.1 Research subject
• • • • • •
1.4.2 Research Scope
The scope of this research project is defined as follows:
Mechanical Part:
• Utilizing Solidworks software for design and calculations.
• Researching and designing the bottle dispensing system, including the bottle
storage container and conveyor system. This research includes aspects related to design and fabrication, ensuring dimensions are suitable for the type of bottles. Turn table: Investigating and rectifying any issues causing the system to jam. Research includes understanding and repairing the rotary table system to eliminate
jams while ensuring the rotation speed of the table.
• Bottle flipping system: Researching and, through experimentation, designing a
flipping mechanism suitable for the bottles, ensuring accurate flipping and proper positioning of the bottles at the end of this process.
14
In this project, the focus is on designing bottle dispensing system using PLC as the
control device, while also enabling system monitoring via an HMI. To achieve the research
objectives, the study includes:
Mechanical structures and systems.
PLC programming.
Modbus ASCII communication protocol.
Variable frequency drive for three phase motor.
User interface.
PET bottles.

Electrical and Control Part:
• PLC: Research focuses on using PLC to control the entire system, including motors, monitoring screens, and sensors to ensure precise and stable process execution.
• ASCII communication protocol: Research focuses on using communication
protocols to control the variable frequency drive.
• Variable frequency drive for three-phase motor: Variable frequency drive for three-
phase motors is used to adjust the speed and rotational frequency of the motor to
match the production process of the machine.
• User interface: The user interface is simple, easy to operate, and allows for system
monitoring.
• Solidwork 2019 software.
• Limited to PET bottles of specified dimensions that are not deformed by impact
• Design and manufacture aimed at achieving over 80% of the target set by the
advisor, which is 1500 bottles.
1.5 Research method
1.5.1 Methodological basis
The research method employs a technical and experimental approach to implement the design of an automated bottle dispensing system. It assesses the feasibility and effectiveness of the system design, utilizing methods such as analysis and comparison as well as data analysis to evaluate the system's performance, features, and scalability compared to other technical approaches.
1.5.2 Specific research methods
The specific research method for this topic includes the following steps:
Literature review: Evaluate literature to explore concepts related to bottles and automatic bottle dispensing machines, PLC control systems, variable frequency drives, control interfaces (HMI), and communication protocols. Review previous studies, technologies, and methods applied in this field to gain an overview of current research and identify unexplored aspects.
Define the research objectives: Clearly define the research objectives and questions of the topic. The research objectives are related to the development of an automatic bottle dispensing system, improving performance, addressing bottle jamming issues, achieving efficient motor control, and implementing a simple user interface.
Research design: Determine the methodology and research plan to achieve the set objectives. This includes designing both the mechanical-electrical components as well as programming the control system to achieve optimal performance.
15

Implementation: Execute the system according to the research design and carry out the research steps. This involves assembling mechanical components, electrical panels, programming the control system, and designing the interface. These steps will be conducted according to the research plan to ensure integrity and reliability.
Evaluation and results analysis: Perform evaluation and analysis of the results obtained through the system's experimental process. This assessment includes performance measurements, data analysis, and comparison with predetermined criteria. The analysis will provide conclusions regarding the system's performance, features, and reliability, as well as provide information to propose improvements and developments for the future.
This chapter is applied to carry out the research steps systematically and scientifically, defining objectives, designing, implementing, and analyzing the evaluation of the system's results.
1.6 Graduation project structures
The graduation project consists of 8 parts, of which the specific contents are as follows: Chapter 1: Introduction
Chapter 2: Theoretical background
Chapter 3: Mechanical design

Like other types of Modbus, Modbus TCP/IP also uses the Master-Slave model for communication. However, it is implemented over Ethernet, using the TCP protocol over IP.
Modbus TCP/IP changes the traditional Master-Slave definition because Ethernet allows peer-to-peer communication. In a TCP network, slaves can actively communicate information to central management devices – Masters. Masters use IP addresses to centrally manage from software. The connection model between PLC and end devices using Modbus TCP/IP standard communicates with each other using the Server and Client model.
Link Download bản DOC
Do Drive thay đổi chính sách, nên một số link cũ yêu cầu duyệt download. các bạn chỉ cần làm theo hướng dẫn.
Password giải nén nếu cần: ket-noi.com | Bấm trực tiếp vào Link để tải:

 
Top