zumilove_faithful
New Member
Download Bài tập luyện tập Hình học 9
Cho đường tròn (O) bán kính OA. Dây CD là trung trực của OA.
a) Tứ giác OCAD là hình gì? Vì sao? Chứng minh tứ giác BMDN là hình bình hành
b) Kẻ tiếp tuyến với đường tròn tại C, tiếp tuyến này cắt đường thẳng OA tại I, tính độ dài CI biết OA = R
++ Ai muốn tải bản DOC Đầy Đủ thì Trả lời bài viết này, mình sẽ gửi Link download cho!
.........................................................................................................................................................................................................................................................................
.........................................................................................................................................................................................................................................................................
.........................................................................................................................................................................................................................................................................
.........................................................................................................................................................................................................................................................................
.........................................................................................................................................................................................................................................................................
.........................................................................................................................................................................................................................................................................
.........................................................................................................................................................................................................................................................................
.........................................................................................................................................................................................................................................................................
.........................................................................................................................................................................................................................................................................
7. Đề số 3/129/ Đề KTT9
Cho hình vuông ABCD. Trên đường chéo BD lấy BH = BA ( H nằm giữa hai điểm B và D). Qua H kẻ đường thẳng vuông góc với BD cắt AD tại O.
So sánh OA, OH và HD
Hãy xác định vị trí tương đối của đường thẳng BD với đường tròn (O; OA)
8. Bài 1/98/ Thực hành T9
Cho đường tròn (O) có đường kính AB. C là điểm bất kỳ trên (O) (C khác A và B). tuyến tại A của (O) cắt BC tại D, gọi M là trung điểm của AD
Chứng minh MC là tiếp tuyến của (O)
OM cắt AC tại I, chứng tỏ khi C di chuyển trên đường tròn(O) , I thuộc một đường tròn cố định
Bài làm
.........................................................................................................................................................................................................................................................................
.........................................................................................................................................................................................................................................................................
.........................................................................................................................................................................................................................................................................
.........................................................................................................................................................................................................................................................................
.........................................................................................................................................................................................................................................................................
.........................................................................................................................................................................................................................................................................
.........................................................................................................................................................................................................................................................................
.........................................................................................................................................................................................................................................................................
.........................................................................................................................................................................................................................................................................
.........................................................................................................................................................................................................................................................................
.........................................................................................................................................................................................................................................................................
.........................................................................................................................................................................................................................................................................
.........................................................................................................................................................................................................................................................................
.........................................................................................................................................................................................................................................................................
.........................................................................................................................................................................................................................................................................
9. Đề số 4/130/ Đề KTT9
Cho ABC cân tại A, đường cao AH và BK cắt nhau tại I. Chứng minh rằng HK là tiếp tuyến của đường tròn đường kính AI
Bài làm
.........................................................................................................................................................................................................................................................................
.........................................................................................................................................................................................................................................................................
.........................................................................................................................................................................................................................................................................
.........................................................................................................................................................................................................................................................................
.........................................................................................................................................................................................................................................................................
...
Download Bài tập luyện tập Hình học 9 miễn phí
Cho đường tròn (O) bán kính OA. Dây CD là trung trực của OA.
a) Tứ giác OCAD là hình gì? Vì sao? Chứng minh tứ giác BMDN là hình bình hành
b) Kẻ tiếp tuyến với đường tròn tại C, tiếp tuyến này cắt đường thẳng OA tại I, tính độ dài CI biết OA = R
++ Ai muốn tải bản DOC Đầy Đủ thì Trả lời bài viết này, mình sẽ gửi Link download cho!
Tóm tắt nội dung:
.........................................................................................................................................................................................................................................................................................................................................................................................................................................................................................
.........................................................................................................................................................................................................................................................................
.........................................................................................................................................................................................................................................................................
.........................................................................................................................................................................................................................................................................
.........................................................................................................................................................................................................................................................................
.........................................................................................................................................................................................................................................................................
.........................................................................................................................................................................................................................................................................
.........................................................................................................................................................................................................................................................................
.........................................................................................................................................................................................................................................................................
7. Đề số 3/129/ Đề KTT9
Cho hình vuông ABCD. Trên đường chéo BD lấy BH = BA ( H nằm giữa hai điểm B và D). Qua H kẻ đường thẳng vuông góc với BD cắt AD tại O.
So sánh OA, OH và HD
Hãy xác định vị trí tương đối của đường thẳng BD với đường tròn (O; OA)
8. Bài 1/98/ Thực hành T9
Cho đường tròn (O) có đường kính AB. C là điểm bất kỳ trên (O) (C khác A và B). tuyến tại A của (O) cắt BC tại D, gọi M là trung điểm của AD
Chứng minh MC là tiếp tuyến của (O)
OM cắt AC tại I, chứng tỏ khi C di chuyển trên đường tròn(O) , I thuộc một đường tròn cố định
Bài làm
.........................................................................................................................................................................................................................................................................
.........................................................................................................................................................................................................................................................................
.........................................................................................................................................................................................................................................................................
.........................................................................................................................................................................................................................................................................
.........................................................................................................................................................................................................................................................................
.........................................................................................................................................................................................................................................................................
.........................................................................................................................................................................................................................................................................
.........................................................................................................................................................................................................................................................................
.........................................................................................................................................................................................................................................................................
.........................................................................................................................................................................................................................................................................
.........................................................................................................................................................................................................................................................................
.........................................................................................................................................................................................................................................................................
.........................................................................................................................................................................................................................................................................
.........................................................................................................................................................................................................................................................................
.........................................................................................................................................................................................................................................................................
9. Đề số 4/130/ Đề KTT9
Cho ABC cân tại A, đường cao AH và BK cắt nhau tại I. Chứng minh rằng HK là tiếp tuyến của đường tròn đường kính AI
Bài làm
.........................................................................................................................................................................................................................................................................
.........................................................................................................................................................................................................................................................................
.........................................................................................................................................................................................................................................................................
.........................................................................................................................................................................................................................................................................
.........................................................................................................................................................................................................................................................................
...