Download miễn phí Đồ án Bài toán tìm đường đi ngắn nhất giữa hai đỉnh thông qua thuật toán Dijkstra





Thuật toán được xây dựng dựa trên ý tưởng rất đơn giản sau : Rõ rang trong đồ thị không có chu trình bao giờ cũng tìm được đỉnh có bán bậc vào bằng 0 ( không có cung đi vào ). Thực vậy, bắt đầu từ đỉnh v1 nếu có cung đi vào nó từ v2 thì ta lại chuyển sang xét đỉnh v2. Nếu có cung v3 đi vào v2, thì ta chuyển sang xét v3. Do đồ thị là không có chu trình nên sau một số hữu hạn lần chuyển như vậy ta phải đi đến đỉnh không có cung đi vào . Thoạt tiên, tìm các đỉnh như vậy của đồ thị . Rõ ràng ta có thể đáng số chúng theo một thứ tự tuỳ ý bắt đầu từ 1.Tiếp theo, loại bỏ khỏi đồ thị những đỉnh đã được đánh số cùng các cung đi ra khỏi chúng, ta thu được đồ thị mới cũng không có chu trình, và thủ tục được lặp lại với đồ thị mới này. Quá trình đó sẽ được tiếp tục cho đến khi tất cả các đinỉh của đồ thị được đánh số.



Để tải bản Đầy Đủ của tài liệu, xin Trả lời bài viết này, Mods sẽ gửi Link download cho bạn sớm nhất qua hòm tin nhắn.
Ai cần download tài liệu gì mà không tìm thấy ở đây, thì đăng yêu cầu down tại đây nhé:
Nhận download tài liệu miễn phí

Tóm tắt nội dung tài liệu:

của nó. Vì vậy, trong nhiều trường hợp sẽ thuận tiện hơn nếu ta bỏ qua hướng trên các cung của đồ thị. Đồ thị vô hướng thu được bằng cách bỏ qua hướng trên các cung được gọi là đồ thị vô hướng tương ứng với đồ thị có hướng đã cho.
I.1.3. Định nghĩa đường đi, chu trình , đồ thị liên thông.
Định nghĩa 1. Đường đi độ dài n từ đỉnh u đến đỉnh v, trong đó n là số nguyên dương, trên đồ thị vô hướng G=(V,E) là dãy
xo, x1 , ... , xn-1 , xn
trong đó u=x0 , v=xn , ( xi , xi+1 ) E , i= 0, 1, 2 ,..., n-1.
Đường đi nói trên còn có thể biểu diễn dưới dạng các cạnh:
(x0 , x1 ) , ( x1 , x2), ... , ( xn-1 , xn ).
Đỉnh u gọi là đỉnh đầu, còn đỉnh v gọi là đỉnh cuối của đường đi. Đường đi có đỉnh đầu trùng với đỉnh cuối ( tức là u=v) được gọi là chu trình. Đường đi hay chu trình được gọi là đơn nếu như không có cạnh nào bị lặp lại.
Thí dụ 1. Trên đồ thị vô hướng cho trong hình 1: a,d,c,f,e là đường đi đơn độ dài 4. Còn d,e,c,a không là đường đi do (e,c) không phải là cạnh của đồ thị. Dãy b,c,f,e,b là chu trình độ dài 4. Đường đi a,b,e,d,a,b có độ dài là 5 không phải là đường đi đơn, do cạnh (a,b) có mặt trong nó hai lần.
a b c a b c
d e f d e f
Hình 1. Đường đi trên đồ thị
Khái niệm đường đi và chu trình trên đồ thị có hướng được định nghĩa hoàn toàn tương tự như trường hợp đồ thị vô hướng, chỉ khác là ta chú ý đến hướng trên các cung.
Định nghĩa 2. Đường đi độ dài n từ đỉnh u đến đỉnh v, trong đó n là số nguyên dương, trên đồ thị có hướng G=(V,A) là dãy
xo, x1 , ... , xn-1 , xn
trong đó u=x0 , v=xn , ( xi , xi+1 ) A , i= 0, 1, 2 ,..., n-1.
Đường đi nói trên còn có thể biểu diễn dưới dạng các cung:
(x0 , x1 ) , ( x1 , x2), ... , ( xn-1 , xn ).
Đỉnh u gọi là đỉnh đầu, còn đỉnh v gọi là đỉnh cuối của đường đi. Đường đi có đỉnh đầu trùng với đỉnh cuối ( tức là u=v) được gọi là chu trình. Đường đi hay chu trình được gọi là đơn nếu như không có cung nào bị lặp lại.
Thí dụ 2. Trên đồ thị có hướng cho trong hình 1: a,d,c,f,e là đường đi đơn độ dài 4. Còn d,e,c,a không là đường đi do (e,c) không phải là cung của đồ thị. Dãy b,c,f,e,b là chu trình độ dài 4. Đường đi a,b,e,d,a,b có độ dài là 5 không phải là đường đi đơn, do cung (a,b) có mặt trong nó hai lần.
Xét một mạng máy tính .Một câu hỏi đặt ra là hai máy tính bất kỳ trong mạng này có thể trao đổi được thông tin với nhau hay trực tiếp qua kênh nối chúng hợăc thông qua một hay vài máy tính trung gian trong mạng? Nếu sử dụng đồ thị để biểu diễn mạng máy tính này (trong đó các đỉnh của đồ thị tương ứng với các máy tính , còn các cạnh tương ứng với các kênh nối) câu hỏi đó được phát biểu trong ngôn ngữ đồ thị như sau: Tồn tại hay chăng đường đi giữa mọi cặp đỉnh của đồ thị ?
Địng nghĩa 3. Đồ thị vô hướng G=(V,E) được gọi là liên thông nếu luôn tìm được đường đi giữa hai đỉnh bất kỳ của nó.
Như vậy hai máy tính bất kỳ trong mạng có thể trao đổi thông tin đượcvới nhau khi và chỉ khi đồ thị tương ứng với mạng này là đồ thị liên thông.
Thí dụ 3. Trong hình 2: Đồ thị G là liên thông, đồ thị H là không liên thông
a b
H1
c
d e
H2
g f
H3
G H
Hình 2. Đồ thị liên thông G và đồ thị H gồm 3 thành phần liên thông H1,H2,H3.
Định nghĩa 4. Ta gọi đồ thị con của đồ thị G=(V,E) là đồ thị H=(W,F), trong đó W V và FE
Trong trường hợp đồ thị là không liên thông , nó sẽ rã ra thành một số đồ thị con liên thông đôi một không có đỉnh chung. Những đồ thị con liên thông như vậy ta sẽ gọi là các thành phần liên thông của đồ thị.
Thí dụ 4. Đồ thị H trong hình 2 gồm 3 thành phần liên thông là H1,H2,H3.
Trong mạng máy tính có thể có những máy ( những kênh nối ) mà sự hỏng hóc của nó có thể ảnh hưởng đến việc trao đổi thông tin trong mạng. Các khái niệm tương ứng với tình huống này được đưa ra trong định nghĩa sau.
Định nghĩa 5. Đỉnh v được gọi là đỉnh rẽ nhánh nếu việc loại bỏ v cùng với các cạnh liên thuộc với nó khỏi đồ thị làm tăng số thành phần liên thông của đồ thị. Cạnh e được gọi là cầu nếu việc loại bỏ nó khỏi đồ thị làm tăng số thành phần liên thông của đồ thị .
Thí dụ 5. trong đồ thị G ở hình 2, đỉnh d và e là đỉnh rẽ nhánh, còn các cạnh (d,g) và (e,f) là cầu.
Đối với đồ thị có hướng có hai khái niệm liên thông phụ thuộc vào việc ta có xét đến hướng trên các cung hay không.
Định nghĩa 6. Đồ thị có hướng G=(V,A) được gọi là liên thông mạnh nếu luôn tìm được đường đi giữa hai đỉnh bất kỳ của nó.
Định nghĩa 7. Đồ thị có hướng G=(V,A) được gọi là liên thông yếu nếu đồ thị vô hướng tương ứng với nó là đồ thị vô hướng liên thông.
Rõ ràng nếu đồ thị là liên thông mạnh thì nó cũng là liên thông yếu, nhưng điều ngược lại là không luôn đúng , như chỉ ra trong thí dụ dưới đây.
Thí dụ 6. Trong hình 3 đồ thị G là liên thông mạnh, còn H là liên thông yếu nhưng không là liên thông mạnh
a b
a b
e
e
c d
c d
Hình 3. Đồ thị liên thông mạnh G
Đồ thị liên thông yếu H
Một câu hỏi đặt ra là khi nào có thể định hướng các cạnh của một đồ thị vô hướng liên thông để có thể thu được một đồ thị có hướng liên thông mạnh? Ta sẽ gọi đồ thị như vậy là đồ thị định hướng được. Định lý dưới đây cho ta tiêu chuẩn nhận biết một đồ thị có là định hướng được hay không.
Định lý 1. Đồ thị vô hướng liên thông là định hướng được khi và chỉ khi mỗi cạnh của nó nằm trên ít nhất một chu trình.
Chứng minh. Điều kiện cần. Giả sử (u,v) là một cạnh của đồ thị ,từ sự tồn tại đường đi có hướng từ u đến v và ngược lại suy ra (u,v) phải nằm trên ít nhất một chu trình.
Điều kiện đủ. Thủ tục sau đây cho phép định hướng các cạnh của đồ thị để thu được đồ thị có hướng liên thông mạnh.Giả sử C là một chu trình nào đó trong đồ thị. Định hướng các cạnh trên chu trình này theo một hướng đi vòng theo nó. Nếu tất các cạnh của đồ thị là đã được định hướng thì kết thúc thủ tục. Ngược lại , chịn C là một cạnh chưa định hướng có chung đỉnh với ít nhất một trong số các cạnh đã định hướng. Theo giả thiết tìm được chu trình C chứa cạnh e. Định hướng các cạnh chưa được định hướng của C’ theo một hướng dọc theo chu trình này( không định hướng lại các cạnh đã có hướng). Thủ tục trên sẽ được lặp lại cho đến khi tất cả các cạnh của đồ thị được định hướng. Khi đó ta thu được đồ thị có hướng liên thông mạnh
I.2 Các khái niệm mở đầu về đề tài cần đề cập tới
I.2.1 Mở đầu
Trong phần này chúng ta chỉ xét đồ thị có hướng G=(V,E) và |V|=n,|E|=m với các cung được gán trọng số, nghĩa là , mỗi cung (u,v)E của nó được đặt tương ứng với một số thực a(u,v) gọi là trọng số của nó.Chúng ta sẽ đặt a(u,v)=, nếu (u,v)E .Nếu dãy
v0, v1 , ... , vp là một đường đi trên G, thì độ dài của nó được định nghĩa là tổng sau:
p
∑a(vi-1, vi)
i=1
tức là , độ dài của đường đi chính là tổng các trọng số trên các cung của nó.(Chú ý rằng nếu chúng ta...
 
Các chủ đề có liên quan khác

Các chủ đề có liên quan khác

Top