ha_anh_p3o

New Member

Download Hệ thống kiến thức Tích phân và ứng dụng của tích phân miễn phí





Bài 1: Cho miền D giới hạn bởi hai đường : x^2+ x - 5 = 0 ; x + y - 3 = 0
Tính thể tích khối tròn xoay được tạo nên do D quay quanh trục Ox
Bài 2: Cho miền D giới hạn bởi các đường : y = x;y= 2 - x;y= 0
Tính thể tích khối tròn xoay được tạo nên do D quay quanh trục Oy
Bài 3:Cho miền D giới hạn bởi hai đường : y = (x-2)^2 và y = 4
Tính thể tích khối tròn xoay được tạo nên do D quay quanh:
a) Trục Ox
b) Trục Oy



Để tải bản DOC Đầy Đủ thì Trả lời bài viết này, mình sẽ gửi Link download cho

Tóm tắt nội dung:

Chuyên đề 13: TÍCH PHÂN VÀ ỨNG DỤNG
TÓM TẮT GIÁO KHOA
I. Bảng tính nguyên hàm cơ bản:
Bảng 1 Bảng 2
Hàm số f(x) Họ nguyên hàm F(x)+C Hàm số f(x) Họ nguyên hàm F(x)+C
a ( hằng số) ax + C

1
1
x C
α
α
+
++
( )ax b α+
a
1 1( )
1
ax b C
α
α
++ ++
1
x
ln x C+ 1
ax b+
1 ln ax b C
a
+ +
xa
ln
xa C
a
+
xe xe C+ ax be + 1 ax be C
a
+ +
sinx -cosx + C sin(ax+b)
1 cos( )ax b C
a
− + +
cosx Sinx + C cos(ax+b)
1 sin( )ax b C
a
+ +
2
1
cos x
tgx + C
2
1
cos ( )ax b+
1 ( )tg ax b C
a
+ +
2
1
sin x
-cotgx + C
2
1
sin ( )ax b+
1 cot ( )g ax b C
a
− + +
' ( )
( )
u x
u x
ln ( )u x C+
2 2
1
x a−
1 ln
2
x a C
a x a
− ++
tgx
ln cos x C− +
2 2
1
x a+
2 2ln x x a C+ + +
cotgx ln sin x C+
Phương pháp 1:
• Phân tích tích phân đã cho thành những tích phân đơn giản có công thức trong bảng nguyên
hàm cơ bản
• Cách phân tích : Dùng biến đổi đại số như mũ, lũy thừa, các hằng đẳng thức ... và biến đổi
lượng giác bằng các công thức lượng giác cơ bản.
Ví dụ : Tìm họ nguyên hàm của các hàm số sau:
1. 3 1( ) cos
1
f x x
x x
= + + − 2. 2
2x 5f(x)
x 4x 3
−= − +
83
Phương pháp 2: Sử dụng cách viết vi phân hóa trong tích phân
Ví dụ: Tính các tích phân: 1. 5cos sinx xdx∫ 2. costgx dxx∫ 3. 1 ln x dxx+∫
I. TÍNH TÍCH PHÂN BẰNG CÁCH SỬ DỤNG ĐN VÀ CÁC TÍNH CHẤT TÍCH PHÂN
1. Định nghĩa: Cho hàm số y=f(x) liên tục trên [ ];a b . Giả sử F(x) là một nguyên hàm của hàm số f(x)
thì:
[ ]( ) ( ) ( ) ( )b ba
a
f x dx F x F b F a= = −∫ ( Công thức NewTon - Leiptnitz)
2. Các tính chất của tích phân:
• Tính chất 1: Nếu hàm số y=f(x) xác định tại a thì : ( ) 0
b
a
f x dx =∫
• Tính chất 2: ( ) ( )
b a
a b
f x dx f x dx= −∫ ∫
• Tính chất 3: Nếu f(x) = c không đổi trên [ ];a b thì: ( )b
a
cdx c b a= −∫
• Tính chất 4: Nếu f(x) liên tục trên [ ];a b và ( ) 0f x ≥ thì ( ) 0b
a
f x dx ≥∫
• Tính chất 5: Nếu hai hàm số f(x) và g(x) liên tục trên [ ];a b và [ ]( ) ( ) x a;bf x g x≥ ∀ ∈ thì
( ) ( )
b b
a a
f x dx g x dx≥∫ ∫
• Tính chất 6: Nếu f(x) liên tục trên [ ];a b và ( ) ( m,M là hai hằng số)m f x M≤ ≤ thì
( ) ( ) ( )
b
a
m b a f x dx M b a− ≤ ≤∫ −
• Tính chất 7: Nếu hai hàm số f(x) và g(x) liên tục trên [ ];a b thì
[ ]( ) ( ) ( ) ( )b b
a a
b
a
f x g x dx f x dx g x dx± = ±∫ ∫ ∫
• Tính chất 8: Nếu hàm số f(x) liên tục trên [ ];a b và k là một hằng số thì
. ( ) . ( )
b b
a a
k f x dx k f x dx=∫ ∫
• Tính chất 9: Nếu hàm số f(x) liên tục trên [ ];a b và c là một hằng số thì
( ) ( ) ( )
b c b
a a c
f x dx f x dx f x dx= +∫ ∫ ∫
• Tính chất 10: Tích phân của hàm số trên [ ];a b cho trước không phụ thuộc vào biến số , nghĩa
là : ( ) ( ) ( ) ...
b b b
a a a
f x dx f t dt f u du= =∫ ∫ ∫ =
84
Bài 1: Tính các tích phân sau:
85
1)
1
3
0
x dx
(2x 1)+∫ 2)
1
0
x dx
2x 1+∫ 3)
1
0
x 1 xdx−∫ 4) 1 2
0
4x 11 dx
x 5x 6
+
+ +∫
5)
1
2
0
2x 5 dx
x 4x 4

− +∫ 6)
3 3
2
0
x dx
x 2x 1+ +∫ 7)
6
6 6
0
(sin x cos x)dx
π
+∫ 8) 32
0
4sin x dx
1 cosx
π
+∫
9)
4
2
0
1 sin 2xdx
cos x
π
+∫ 10) 2 4
0
cos 2xdx
π
∫ 11) 2
6
1 sin 2x cos2xdx
sin x cosx
π
π
+ +
+∫ 12)
1
x
0
1 dx
e 1+∫ .
13) dxxx )sin(cos
4
0
44∫ −
π
14) ∫ +
4
0 2sin21
2cos
π
dx
x
x 15) ∫ +
2
0 13cos2
3sin
π
dx
x
x 16) ∫ −
2
0 sin25
cos
π
dx
x
x
17) ∫ −+−
0
2
2 32
4 dx
xx
18) ∫ ++−
1
1
2 52xx
dx
Bài 2:
1)
3
2
3
x 1dx

−∫ 2)
4
2
1
x 3x 2dx

− +∫ 3) 5
3
( x 2 x 2 )dx

+ − −∫ 4)
2
2
2
1
2
1x 2
x
+ −∫ dx
5)
3
x
0
2 4dx−∫ 6)
0
1 cos2xdx
π
+∫ 7) 2
0
1 sin xdx
π
+∫ 8) dxxx∫ −2
0
2
Bài 3:
1) Tìm các hằng số A,B để hàm số f(x) A sin x B= π + thỏa mãn đồng thời các điều kiện
và 'f (1) 2=
2
0
f(x)dx 4=∫
2) Tìm các giá trị của hằng số a để có đẳng thức :
2
2 3
0
[a (4 4a)x 4x ]dx 12+ − + =∫
II. TÍNH TÍCH PHÂN BẰNG PHƯƠNG PHÁP ĐỔI BIẾN SỐ :
1) DẠNG 1:Tính I = bằng cách đặt t = u(x)
b
'
a
f[u(x)].u (x)dx∫
Công thức đổi biến số dạng 1: [ ] ∫=∫ )(
)(
)()('.)(
bu
au
b
a
dttfdxxuxuf
Cách thực hiện:
Bước 1: Đặt t dxxudtxu )()( '=⇒=
Bước 2: Đổi cận :
)(
)(
aut
but
ax
bx
=
=⇒=
=
Bước 3: Chuyển tích phân đã cho sang tích phân theo biến t ta được
[ ]∫= b fI (tiếp tục tính tích phân mới) ∫= )(
)(
)()('.)(
bu
aua
dttfdxxuxu
Tính các tích phân sau:
1)
2
3 2
0
cos xsin xdx
π
∫ 2) 2 5
0
cos xdx
π
∫ 3) 4 2
0
sin 4x dx
1 cos x
π
+∫ 4)
1
3 2
0
x 1 x dx−∫
5)
2
2 3
0
sin 2x(1 sin x) dx
π
+∫ 6) 4 4
0
1 dx
cos x
π
∫ 7) e
1
1 ln xdx
x
+∫ 8) 4
0
1 dx
cosx
π

9)
e 2
1
1 ln xdx
x
+∫ 10) 11) 1 5 3 6
0
x (1 x ) dx−∫ 6 2
0
cosx dx
6 5sin x sin x
π
− +∫ 12)
3 4
0
tg x dx
cos2x∫
13)
4
0
cos sin
3 sin 2
x x dx
x
π
+
+∫ 14) ∫ +
2
0 22 sin4cos
2sin
π
dx
xx
x 15) ∫ −+ −
5ln
3ln 32 xx ee
dx 16) ∫ +
2
0
2)sin2(
2sin
π
dx
x
x
17) ∫3
4
2sin
)ln(
π
π
dx
x
tgx 18) ∫ −4
0
8 )1(
π
dxxtg 19) ∫ +
−2
4
2sin1
cossin
π
π
dx
x
xx 20) ∫ +
+2
0 cos31
sin2sin
π
dx
x
xx
21) ∫ +
2
0 cos1
cos2sin
π
dx
x
xx 22) ∫ +2
0
sin cos)cos(
π
xdxxe x 23) ∫ −+
2
1 11
dx
x
x 24) ∫ +
e
dx
x
xx
1
lnln31
25) ∫ +
−4
0
2
2sin1
sin21
π
dx
x
x
2) DẠNG 2: Tính I = bằng cách đặt x =
b
a
f(x)dx∫ (t)ϕ
Công thức đổi biến số dạng 2: [ ]∫=∫= β
α
ϕϕ dtttfdxxfI b
a
)(')()(
Cách thực hiện:
Bước 1: Đặt dttdxtx )()( 'ϕϕ =⇒=
Bước 2: Đổi cận : α
β
=
=⇒=
=
t
t
ax
bx
Bước 3: Chuyển tích phân đã cho sang tích phân theo biến t ta được
(tiếp tục tính tích phân mới) [ ]∫=∫= β
α
ϕϕ dtttfdxxfI b
a
)(')()(
Tính các tích phân sau:
1)
1
2
0
1 x dx−∫ 2) 1 2
0
1 dx
1 x+∫ 3)
1
2
0
1 dx
4 x−∫ 4)
1
2
0
1 dx
x x 1− +∫
5)
1
4 2
0
x dx
x x 1+ +∫ 6)
2
0
1
1 cos sin
dx
x x
π
+ +∫ 7)
2
22
2
0
x dx
1 x−∫ 8)
2
2 2
1
x 4 x dx−∫
86
9)
2
3
2
2
1 dx
x x 1−∫ 10)
3 2
2
1
9 3x dx
x
+∫ 11) 1 5
0
1
(1 )
x dx
x

+∫ 12)
2
2
2
3
1
1
dx
x x −∫
13)
2
0
cos
7 cos2
x dx
x
π
+∫ 14)
1 4
6
0
1
1
x dx
x
+
+∫ 15) 20
cos
1 cos
x dx
x
π
+∫ 16) ∫ ++−
0
1
2 22xx
dx
17) ∫ ++
1
0 311 x
dx 18) ∫ −
−2
1 5
1 dx
x
xx
II. TÍNH TÍCH PHÂN BẰNG PHƯƠNG PHÁP VI PHÂN:
Tính các tích phân sau:
1)
8
2
3
1
1
dx
x x +∫ 2)
7 3
3 2
0 1
x dx
x+∫ 3)
3
5 2
0
1x x dx+∫ 4) ln2 x
0
1 dx
e 2+∫
5)
7
3
3
0
1
3 1
x dx
x
+
+∫ 6)
2
2 3
0
1x x d+∫ x 7) ∫ +
32
5 2 4xx
dx
III. TÍNH TÍCH PHÂN BẰNG PHƯƠNG PHÁP TÍCH PHÂN TỪNG PHẦN:
Công thức tích phân từng phần:
[ ]∫ ∫−=b
a
b
a
b
a dxxuxvxvxudxxvxu )(').()().()(').(
Hay: [ ]∫ ∫−=b
a
b
a
b
a vduvuudv .
Cách thực hiện:
Bước 1: Đặt
)(
)('
)('
)(
xvv
dxxudu
dxxvdv
xuu
=
=⇒=
=
Bước 2: Thay vào công thức tích phân từng từng phần : [ ]∫ ∫−=b
a
b
a
b
a vduvuudv .
Bước 3: Tính [ và ]bavu. ∫b
a
vdu
Tính các tích phân sau:
1)
2
5
1
ln xdx
x∫ 2)
2
2
0
x cos xdx
π
∫ 3) 1 x
0
e sin xdx∫
4)
2
0
sin xdx
π∫ 5) 6) e 2
1
x ln xdx∫ 3 2
0
x sin xdx
cos x
π
+∫
87
7) 8) 2
0
xsin x cos xdx
π∫ 4 2
0
x(2 cos x 1)dx
π
−∫ 9)
2
2
1
ln(1 x)dx
x
+∫
10) 11) 12)
1
2 2x
0
(x 1) e dx+∫
e
2
1
(x ln x) dx∫ 2
0
cosx.ln(1 cosx)dx
π
+∫
13) 2
1
ln
( 1)
e
e
x dx
x +∫ 14)
1
2
0
xtg xdx∫ 15) ∫ −1
0
2)2( dxex x
16) 17) ∫ +
1
0
2 )1ln( dxxx ∫
e
dx
x
x
1
ln 18) ∫ +2
0
3 sin)cos(
π
xdxxx
19) 20) ∫ ++
2
0
)1ln()72( dxxx ∫ −
3
2
2 )ln( dxxx
MỘT SỐ BÀI TOÁN TÍCH PHÂN QUAN TRỌNG VÀ ỨNG DỤNG
Bài 1: 1) CMR nếu f(x) lẻ và liên tục trên [-...
 

Kiến thức bôn ba

Các chủ đề có liên quan khác
Tạo bởi Tiêu đề Blog Lượt trả lời Ngày
D Đặc điểm hoạt động kiến tạo các hệ thống đứt gãy khu vực thủy điện Sông Tranh 2, tỉnh Quảng Nam Kiến trúc, xây dựng 1
T Thực trạng quản trị hệ thống lương ở các doanh nghiệp hiện nay - Một số kiến nghị và giải pháp Kiến trúc, xây dựng 2
I Một số ý kiến nhằm hoàn thiện hệ thống trả lương cho người lao động ở công ty giầy Thụy Khuê Công nghệ thông tin 0
N Các kiến nghị và giải pháp hướng tới công tác tạo động lực từ hệ thống trả công cho người lao động tại xí nghiệp may xuất khẩu thanh trì Luận văn Kinh tế 0
W Nghiên cứu và hệ thống các kiến thức cơ bản về chương trình dự án quốc gia; tổng hợp kết quả, phân tích đánh giá hiệu quả của Chương trình 134 Luận văn Kinh tế 0
S Hệ thống tài khoản kế toán áp dụng cho doanh nghiệp và ý kiến về việc vận dụng tài khoản kế toán vào việc hạch toán chi phí sản xuất và tính giá thành sản phẩm của các doanh nghiệp xây lắp Luận văn Kinh tế 0
T Thiết kế hệ thống xử lý nước thải quận Kiến An Luận văn Kinh tế 0
M Nghiên cứu kiến trúc hệ thống tiêu thụ ít năng lượng cho mạng sensor Công nghệ thông tin 0
S Cấu hình lại phần cứng trong kiến trúc hệ thống nhúng như một khả năng tăng tính linh hoạt của hệ thống tự động Công nghệ thông tin 0
N Hệ thống tự động tổng hợp ý kiến góp ý trong hội nghị Hệ Thống thông tin quản trị 0

Các chủ đề có liên quan khác

Top