Download Luyện thi Đại học - chuyên đề khảo sát hàm số

Download Luyện thi Đại học - chuyên đề khảo sát hàm số miễn phí





Câu 22. Cho hàm số y = -x^3 +3x^2 - 4 (1)
1.Khảo sát sựbiến thiên và vẽ ñồthị(C) của hàm số(1)
2. Giảsử A, B ,C là ba ñiểm thẳng hàng thuộc ñồthị(C),
tiếp tuyến với (C) tại A, B ,C tương ứng cắt lại (C) tại
A', B', C . Chứng minh rằng ba ñiểm
A, B ,C thẳng
hàng.
Câu 23. Cho hàm số y = x^3 - 3x + 1
1)Khảo sát sựbiến thiên và vẽ ñồthị(C) của hàm số(1).
2)ðường thẳng ( ∆ ): y = mx+1 (C) tại ba ñiểm. Gọi
A và B là hai ñiểm có hoành ñộkhác 0 trong ba ñiểm nói
ởtrên; gọi D là ñiểm cực tiểu của (C). Tìm m ñểgóc
ADB là góc vuông



++ Ai muốn tải bản DOC Đầy Đủ thì Trả lời bài viết này, mình sẽ gửi Link download cho!

Tóm tắt nội dung:

m phân biệt và y’ ñổi dấu khi x ñi qua hai nghiệm ñó

0
0
a ≠
∆ >
C
www.VNMATH.com
Chuyªn ®Ò luyÖn thi ®¹i häc-phÇn i: kh¶o s¸t hµm sè Năm học: 2000- 2011
Cách học tốt môn Toán là phải làm nhiều , bên cạnh ñó ,d ( hehe...a )
Trang2/10-LTðH-2010
Baøi taäp
Dạng 4: Cho hàm số y = f(x) có chứa tham số m. Chứng
minh rằng với mọi m ñồ thị hàm số luôn luôn có cực trị?
Phương pháp:
TXð: D = ℝ
Ta có: y’ = ax2 + bx + c
Xét phương trình y’ = 0, ta có:
∆ =….>0, ∀m
Vậy với mọi m ñồ thị hàm số ñã cho luôn luôn có cực trị.
Dạng 5: Cho hàm số y = f(x) có chứa tham số m. ðịnh m
ñể ñồ thị hàm số không có cực trị?
Phương pháp:
TXð: D = ℝ
Ta có: y’ = ax2 + bx + c
Hàm số không có cực trị khi y’ không ñổi dấu trên toàn
tập xác ñịnh
0
0
a ≠
⇔ ∆ ≤
Dạng 6: Cho hàm số y = f(x) có chứa tham số m. ðịnh m
ñể ñồ thị hàm số ñạt cực ñại tại x0?
Phương pháp:
TXð: D = ℝ
Ta có: y’ = ax2 + bx + c
ðể hàm số ñạt cực ñại tại x0 thì
0
0
'( ) 0
''( ) 0
f x
f x
=

<
Dạng 7: Cho hàm số y = f(x) có chứa tham số m. ðịnh m
ñể ñồ thị hàm số ñạt cực tiểu tại x0?
Phương pháp:
TXð: D = ℝ
Ta có: y’ = ax2 + bx + c
ðể hàm số ñạt cực tiểu tại x0 thì
0
0
'( ) 0
''( ) 0
f x
f x
=

>
Dạng 8: Cho hàm số y = f(x) có chứa tham số m. ðịnh m
ñể ñồ thị hàm số ñạt cực trị bằng h tại x0?
Phương pháp: TXð: D = ℝ
Ta có: y’ = ax2 + bx + c
ðể hàm số ñạt cực trị bằng h tại x0 thì
0
0
'( ) 0
( )
f x
f x h
=

=
Dạng 9: Cho hàm số y = f(x) có chứa tham số m. ðịnh m
ñể ñồ thị hàm số ñi qua ñiểm cực trị M(x0;y0)?
Phương pháp:
TXð: D = ℝ
Ta có: y’ = ax2 + bx + c
ðể hàm số ñi qua ñiểm cực trị M(x0;y0) thì 0
0 0
'( ) 0
( )
f x
f x y
=

=
Dạng 10: Cho hàm số y = f(x) có ñồ thị (C) và
M(x0;y0)∈(C). Viết PTTT tại ñiểm M(x0;y0) ?
Phương pháp:
Ta có: y’ = f’(x) ⇒ f’(x0)
Phương trình tiếp tuyến tại ñiểm M(x0;y0) là
y – y0 = f’(x0).( x – x0 )
Các dạng thường gặp khác :
1/ Viết phương trình tiếp tuyến với ñồ thị (C) tại ñiểm có
hòanh ñộ x0.
Ta tìm: + y0 = f(x0)
+ f’(x) ⇒ f’(x0)
Suy ra phương trình tiếp tuyến cần tìm là
y – y0 = f’(x0).( x – x0 )
2/ Viết phương trình tiếp tuyến với ñồ thị (C) tại ñiểm
thỏa mãn phương trình f”(x)= 0.
Ta tìm: + f’(x)
+ f”(x)
+Giải phương trình f”(x) = 0⇒ x0
+ y0 và f’(x0). Suy ra PTTT.
Dạng 11: Cho hàm số y = f(x) có ñồ thị (C) Viết phương
trình tiếp tuyến (d) của (C)
a/ song song với ñường thẳng y = ax + b.
b/ vuông góc với ñường thẳng y = ax + b.
Phương pháp:
a/ Tính: y’ = f’(x)
Vì tiếp tuyến (d) song song với ñường thẳng y = ax + b
nên (d) có hệ số góc bằng a.
Ta có: f’(x) = a (Nghiệm của phương trình này chính là
hoành ñộ tiếp ñiểm)
Tính y0 tương ứng với mỗi x0 tìm ñược.
Suy ra tiếp tuyến cần tìm (d):
y – y0 = a. ( x – x0 )
www.VNMATH.com
Chuyªn ®Ò luyÖn thi ®¹i häc-phÇn i: kh¶o s¸t hµm sè Năm học: 2000- 2011
Cách học tốt môn Toán là phải làm nhiều , bên cạnh ñó ,d ( hehe...a )
Trang3/10-LTðH-2010
Baøi taäp
b/ Tính: y’ = f’(x)
Vì tiếp tuyến (d) vuông góc với ñường thẳng y = ax + b
nên (d) có hệ số góc bằng 1
a
− .
Ta có: f’(x) = 1
a
− (Nghiệm của phương trình này chính
là hoành ñộ tiếp ñiểm)
Tính y0 tương ứng với mỗi x0 tìm ñược.
Suy ra tiếp tuyến cần tìm (d):
y – y0 =
1
a
− . ( x – x0 )
Chú ý:
+ ðường phân giác của góc phần tư thứ nhất y = x.
+ ðường phân giác của góc phần tư thứ hai y = - x.
Dạng 12: Cho hàm số y = f(x) có ñồ thị (C) Tìm GTLN,
GTNN của hàm số trên [a;b]
Phương pháp:
Ta có: y’ = f’(x)
Giải phương trình f’(x) = 0, ta ñược các ñiểm cực trị: x1,
x2, x3,…∈ [a;b]
Tính: f(a), f(b), f(x1), f(x2), f(x3),…
Từ ñó suy ra: [ ] [ ]; ;ax ; ina b a bm y m y= =
Phương pháp chung ta thường lập BBT
Dạng 13: Cho họ ñường cong y = f(m,x) với m là tham
số.Tìm ñiểm cố ñịnh mà họ ñường cong trên ñi qua với
mọi giá trị của m.
Phương pháp:
Ta có: y = f(m,x)
⇔ Am + B = 0, ∀m (1)
hay Am2 + Bm + C = 0, ∀m (2)
ðồ thị hàm số (1) luôn luôn ñi qua ñiểm M(x;y) khi (x;y)
là nghiệm của hệ phương trình:
0
0
A
B
=

=
(a) (ñối với (1))
hay
0
0
0
A
B
C
=

=

=
(b) (ñối với (2))
Giải (a) hay (b) ñể tìm x rồi→ y tương ứng.
Từ ñó kết luận các ñiểm cố ñịnh cần tìm.
Dạng 14: Giả sử (C1) là ñồ thị của hàm số y = f(x) và
(C2) là ñồ thị của hàm số y = g(x). Biện luận số
giao ñiểm của hai ñồ thị (C1), (C2).
Phương pháp:
Phương trình hoành ñộ giao ñiểm của y = f(x) và
y = g(x) là
f(x) = g(x)
⇔ f(x) – g(x) = 0 (*)
Số giao ñiểm của hai ñồ thị (C1), (C2) chính là số nghiệm
của phương trình (*).
Dạng 15: Dựa vào ñồ thị hàm số y = f(x), biện luận theo
m số nghiệm của phương trình f(x) + g(m) = 0
Phương pháp:
Ta có: f(x) + g(m) = 0
⇔ f(x) = g(m) (*)
Số nghiệm của (*) chính là số giao ñiểm của ñồ thị (C): y
= f(x) và ñường g(m).
Dựa vào ñồ thị (C), ta có:…v.v…
Dạng 16: Cho hàm số y = f(x), có ñồ thị (C). CMR ñiểm
I(x0;y0) là tâm ñối xứng của (C).
Phương pháp:
Tịnh tiến hệ trục Oxy thành hệ trục OXY theo vectơ
( )0 0;OI x y=

.
Công thức ñổi trục: 0
0
x X x
y Y y
= +

= +
2
3
xy
x
+
=

Thế vào y = f(x) ta ñược Y = f(X)
Ta cần chứng minh hàm số Y = f(X) là hàm số lẻ. Suy ra
I(x0;y0) là tâm ñối xứng của (C).
Dạng 17: Cho hàm số y = f(x), có ñồ thị (C). CMR ñường
thẳng x = x0 là trục ñối xứng của (C).
Phương pháp:
ðổi trục bằng tịnh tiến theo vectơ ( )0;0OI x=

Công thức ñổi trục 0
x X x
y Y
= +

=
Thế vào y = f(x) ta ñược Y = f(X)
Ta cần chứng minh hàm số Y = f(X) là hàm số chẵn. Suy
ra ñường thẳng x = x0 là trục ñối xứng của (C).
www.VNMATH.com
Chuyªn ®Ò luyÖn thi ®¹i häc-phÇn i: kh¶o s¸t hµm sè Năm học: 2000- 2011
Cách học tốt môn Toán là phải làm nhiều , bên cạnh ñó ,d ( hehe...a )
Trang4/10-LTðH-2010
Baøi taäp
Dạng 18: Sự tiếp xúc của hai ñường cong có phương trình
y = f(x) và y = g(x).
Phương pháp:
Hai ñường cong y = f(x) và y = g(x) tiếp xúc với nhau khi
và chỉ khi hệ phương trình
( ) ( )
'( ) '( )
f x g x
f x g x
=

=
Có nghiệm và nghiệm của hệ phương trình trên là hoành
ñộ tiếp ñiểm của hai ñường cong ñó.
Dạng 19: Tìm ñiểm A ,từ A kẻ ñc n tiếp tuyến tới ñồ
thị )(xfy = (C)
Phương pháp
+Giả sử ( )00 , yxA
+ Pt ñthẳng ñi qua ( )00 , yxA có hệ số góc k có dạng :
( ) ( ) 00: yxxkyd +−=
+ðthẳng (d) tiếp xúc vớI ñồ thị (C) khi hệ sau có nghiệm
( ) ( )
( )

=
+−=
)2(
)1(
'
00
kxf
yxxkxf
Thay (2) vào (1) ñược : ( ) ( )( ) 00' yxxxfxf +−= (3)
+Khi ñó số nghiệm phân biệt của (3) là số tiếp tuyến kẻ từ
A tớI ñồ thị (C)
Do ñó từ A kẻ ñược k tiếp tuyến tớI ñồ thị (C)
⇔ có k nghiệm phân biệt ⇒ ñiểm A (nếu có)
Dạng 20: ðịnh ñkiện ñể ñồ thị hàm số bậc 3 có Cð ,
CT nằm về 2 phía (D)
Phương pháp +ðịnh ñkiện ñể ñồ thị hàm số bậc 3 có các
ñiểm cực trị ( ) ),(&, 222111 yxMyxM
( 21 , xx là nghiệm của pt y' = 0)
1)Nếu (D) là trục Oy thì ycbt 21 0 xx <<⇔
2)Nếu (D) là ñthẳng x = m thì ycbt 21 0 xx <<⇔
3)Nếu (D) là ñthẳng 0=++ cbyax thì:
...
 

Các chủ đề có liên quan khác

Top