nguoiwenttv

New Member

Download miễn phí Mô hình kinh tế lượng xác định mức độ thông tin bất cân xứng: Tình huống thị trường chứng khoán thành phố Hồ Chí Minh





VOL là số lượng cổ phiếu giao dịch trung bình trong một ngày, SIGVOL là độ lệch chuẩn của lượng cổ phiếu giao dịch hàng ngày. Theo Ness và cộng sự (2001) cho rằng số lượng cổ phiếu được giao dịch càng ít thì vấn đề thông tin càng lớn. Tức thông tin bất cân xứng càng cao khi số lượng cổ phiếu giao dịch càng ít, do vậy kỳ vọng VOL sẽ nghịch biến với TC.
LEVG là tỷ số nợ dài hạn từ một năm trở lên và tổng tài sản hay còn gọi là đòn bẩy tài chính. Đo lường bằng LEVG = (nợ dài hạn + nợ đến hạn trong 1 năm)/tổng tài sản. Theo nhiều nghiên cứu cho rằng đòn bẩy tài chính lớn sẽ làm cho giá trị tài sản của công ty không ổn định và lợi nhuận đạt được cũng không ổn định. Vì thế bất cân xứng thông tin giữa nhà đầu tư và công ty có thể càng lớn, do vậy kỳ vọng LEVG sẽ đồng biến với TC.
PRI là giá cổ phiếu trung bình. Thông tin sẽ phản ánh trực tiếp vào giá cổ phiếu. Thông tin tốt sẽ làm cho giá tăng và ngược lại. Tuy nhiên, trên thị trường hiện nay thì bao hàm cả thông tin tốt và thông tin bất cân xứng, do vậy kỳ vọng PRI có thể (-/+) nghịch biến hay đồng biến với TC.
 



Để tải bản Đầy Đủ của tài liệu, xin Trả lời bài viết này, Mods sẽ gửi Link download cho bạn sớm nhất qua hòm tin nhắn.
Ai cần download tài liệu gì mà không tìm thấy ở đây, thì đăng yêu cầu down tại đây nhé:
Nhận download tài liệu miễn phí

Tóm tắt nội dung tài liệu:

Mô hình kinh tế lượng xác định mức độ thông tin bất cân xứng: Tình huốn thị trường chứng khoán TPHCM
Tác giả: PGS.TS Nguyễn Trọng Hoài & Lê An Khang
(Bài đã đăng trên Tạp Chí Phát Triển Kinh Tế số 213 – tháng 7.2008)
Không kể đến tình hình thị trường chứng khoán ảm đạm như hiện nay, ở những lúc thị trường được xem là năng động và phát triển nhất như thời gian đầu của năm 2007, thị trường chứng khoán vẫn còn nhiều vấn đề còn tồn tại cần khắc phục để thị trường phát triển tốt và bền vững. Điển hình là tình trạng mất cân bằng giữa cung và cầu chứng khoán khá lớn, chính sách điều hành vĩ mô chưa phù hợp với thị trường, hành vi giao dịch của nhà đầu tư còn mang tính bầy đàn khá cao, thông tin về công ty niêm yết còn khá mơ hồ, cơ sở hạ tầng phục vụ thị trường chưa đáp ứng được nhu cầu phát triển, khung pháp lý điều chỉnh chưa bao quát và hiện còn nhiều thay đổi không ổn định, giao dịch nội gián vẫn chưa được răn đe đúng mức, việc đặt hủy lệnh hay nhằm “room” còn khá phổ biến v.v...
Một trong những nguyên nhân quan trọng có thể làm cho thị trường thất bại là trình trạng thông tin bất cân xứng công ty niêm yết đối với nhà đầu tư. Hiện có rất nhiều thông tin về công ty niêm yết đã và đang được công bố, nhưng độ tin cậy lại không cao hay có những thông tin ảnh hưởng lớn đến quyết định mua hay bán của nhà đầu tư thì rất khó tìm kiếm như chi phí nghiên cứu và đầu tư phát triển, các bài phân tích các chỉ số lợi nhuận, các yếu tố đầu vào để dự báo các chỉ số kế hoạch, cơ cấu và số lượng cổ đông có công bố nhưng chưa đầy đủ và đồng bộ, các kế hoạch hợp tác và định hướng dài hạn chưa đủ tin cậy và nhiều khi còn mang tính thổi phồng. Vì có hiện tượng thông tin bất cân xứng trên nên giá cổ phiếu của các các công ty niêm yết còn được định giá khá chủ quan. Mỗi người nhận định theo một kiểu và như thế rất bị tác động bởi những thông tin khác, đặc biệt là các tin đồn. Chính vì thế mà thị trường luôn biến động thất thường và có thể hay gặp sự cố đảo chiều bất lợi với tốc độ cao.
Để xác định mức độ thông tin bất cân xứng trên thị trường và đề ra các giải pháp hạn chế mức độ bất cân xứng nêu trên, bài viết này nhóm tác giả chọn phạm vi nghiên cứu là thị trường chứng khoán tại TP.HCM và dữ liệu nghiên cứu bắt đầu từ ngày 02/01/2007 đến 28/12/2007.
Giả thiết nghiên cứu:
Sau khi quan sát các biểu hiện thông tin bất cân xứng tại thị trường chứng khoán VN chúng tui đưa ra hai giả thiết nghiên cứu chính là: a) Mức độ thông tin bất cân xứng tại thị trường chứng khoán VN nói chung và TP.HCM nói riêng tồn tại ở mức độ cao; và b) Giá chứng khoán không chỉ do cung cầu mà còn do yếu tố tâm lý đám đông quyết định.
Mô hình đo lường mức độ thông tin bất cân xứng
Hệ quả của thông tin bất cân xứng là lựa chọn bất lợi và tâm lý ỷ lại. Trong đó thông qua chi phí lựa chọn bất lợi, chúng ta có thể đánh giá được mức độ thông tin bất cân xứng của nhà đầu tư về các công ty niêm yết hiện nay là cao hay thấp.
(a) Mô hình đo lường chi phí lựa chọn bất lợi
Một trong những mô hình phổ biến được dùng để đo lường chi phí lựa chọn bất lợi là mô hình của Glosten và Harris (1988) và theo nhóm tác giả thì mô hình này khá phù hợp với việc đo lường trong điều kiện giao dịch của thị trường chứng khoán TP.HCM hiện nay. Mô hình xác định chi phí lựa chọn bất lợi được thiết lập dựa trên sự biến đổi giá giao dịch (Bid-Ask Spread) tại các thời điểm:
Pt – Pt-1 = c0 (Qt - Qt-1) + c1 (QtVt - Qt-1Vt-1) + z0 Qt + z1Qt Vt + et .  [1]
Trong đó:
Pt  và Pt-1: là giá cổ phiếu tại thời điểm t và t-1
Qt là chỉ số giao dịch của cổ phiếu tại thời điểm t, Qt bằng +1 nếu là người mua và bằng -1 nếu là người bán. Do trong khoảng thời gian ngắn, gần như là cùng một thời điểm có rất nhiều giao dịch được khớp lệnh nên rất khó xác định được Qt. Vì thế có thể gộp các giao dịch đó làm thành một giao dịch (Lee và Ready, 1991 trích trong Serednyakov, 2005) và Qt được xác định như sau:
-   Giao dịch Qt bằng +1 nếu tại thời điểm giao dịch Pt > Pt-1   
-   Giao dịch Qt bằng -1 nếu tại thời điểm giao dịch Pt < Pt-1   
-   Giao dịch Qt bằng Qt-1 nếu tại thời điểm giao dịch Pt = Pt-1   
Vt là lượng giao dịch cổ phiếu tại thời điểm t
c0, c1, z0, z1 là các hệ số của mô hình [1] nói trên.
et: là sai số của phương trình (khi có sự thay đổi thông tin).
Theo Glosten & Harris thì thành phần sự biến thiên của giá giao dịch gồm có ba thành phần: chi phí lựa chọn bất lợi, chi phí xử lý đặt lệnh và chi phí lưu trữ. Trong đó, chi phí lựa chọn bất lợi được xác định là Z0 = 2(z0 + z1Vt), phần còn lại chi phí xử lý đặt lệnh và chi phí lưu trữ được xác định là C0 = 2(c0 + c1Vt). Thành phần lựa chọn bất lợi (được gọi là) được xác định: ASC = Z0/(Z0 + C0). Để xác định được chi phí lựa chọn bất lợi hay thành phần lựa chọn bất lợi, Vt được xác định bằng cách tính theo lượng giao dịch cổ phiếu bình quân trên thị trường của một lọai cổ phiếu.
(b) Đo lường các biến thông tin
Để xem xét yếu tố thông tin nào tác động chủ yếu đến tình trạng bất cân xứng thông tin như hiện nay, nhóm tác giả đã dựa theo nghiên cứu của Ness và các cộng sự (2001), dựa theo theo hàm hồi quy:
TC = f(INTGTA, MB, MVE, VOL, LEVG, PRI, VAR, SIGR, SIGVOL, ANLYST, ERRE, DISP, RDSALES, PINST, INST).     [2]
 Trong đó:
TC là chi phí lựa chọn bất lợi theo giá. Đo lường bằng công thức TC = Z0/P
INTGTA là tỷ số giữa tài sản vô hình và tổng tài sản. Đo lường INTGTA bằng tỉ số tài sản vô hình/tổng tài sản. Do rất khó xác định được giá trị tài sản vô hình nên nhà đầu tư cũng rất khó xác định được cơ cấu tài sản.  Vì vậy thông tin bất cân xứng sẽ càng cao khi công ty có giá trị tài sản vô hình lớn, do vậy kỳ vọng cho mối quan hệ này là đồng biến với TC.
MB là tỷ số giá trị thị trường và sổ sách. Đo lường bằng . Trong đó: CS là số lượng cổ phiếu phát hành, P là giá mỗi cổ phiếu, A là tổng tài sản của công ty, CE vốn cổ chủ sở hữu. MB được xem là chỉ tiêu để đánh giá cơ hội phát triển của công ty (Scherr và Hulburt, 2001 trích trong Ness và các cộng sự, 2001), cơ hội phát triển càng cao thì thông tin bất cân xứng càng cao do khó kiểm sóat quá trình đầu tư và thẩm định dự án tiềm năng. Do vậy, kỳ vọng là MB sẽ đồng biến với TC.
MVE là giá trị thị trường của vốn cổ phần. Đây được xem là chỉ tiêu biểu thị độ lớn của công ty niêm yết. Vì công ty càng lớn thì càng dễ dàng đạt được thông tin về nó, nên thông tin bất cân xứng sẽ giảm khi công ty có qui mô lớn. Do vậy,kỳ vọng MVE sẽ nghịch biến với TC.
VOL là số lượng cổ phiếu giao dịch trung bình trong một ngày, SIGVOL là độ lệch chuẩn của lượng cổ phiếu giao dịch hàng ngày. Theo Ness và cộng sự (2001) cho rằng số lượng cổ phiếu được giao dịch càng ít thì vấn đề thông tin càng lớn. Tức thông tin bất cân xứng càng cao khi số lượng cổ phiếu giao dịch càng ít, do vậy kỳ vọng VOL sẽ nghịch biến với TC.
LEVG là tỷ số nợ dài...
 
Các chủ đề có liên quan khác
Tạo bởi Tiêu đề Blog Lượt trả lời Ngày
D Ứng dụng mô hình DEA đánh giá hiệu quả hoạt động của các Ngân hàng thương mại cổ phần Việt Nam Thạc sĩ kinh tế Luận văn Kinh tế 0
D Phân tích mô hình kinh doanh của Grab Luận văn Kinh tế 0
D Truy cập vào website của Amazon và phân tích mô hình kinh doanh của Website đó Luận văn Kinh tế 0
D Mô hình phát triển của Nhật Bản và bài học kinh nghiệm cho Việt Nam Luận văn Kinh tế 1
D So Sánh Hiệu Quả Kinh Tế Giữa Mô Hình Nuôi Cá Tra (Pangasianodon Hypophthalmus) Có Liên Kết Và Không Nông Lâm Thủy sản 0
D Ebook các mô hình tăng trưởng kinh tế PGS TS Trần Thọ Đạt (chủ biên) Luận văn Kinh tế 0
D ứng dụng mô hình hệ thống lạnh water chiller vào giảng dạy học phần thực tập lạnh công nghiệp tại trường trung cấp kinh tế Luận văn Sư phạm 0
D Áp dụng mô hình CAMELS để phân tích, đánh giá kết quả hoạt động kinh doanh của ngân hàng TMCP Việt Nam Thịnh Vượng (VPBank) và đưa ra giải pháp Luận văn Kinh tế 0
T Áp dụng các mô hình toán kinh tế trong việc phân tích cổ phiếu ngành điện trên TTCK Việt Nam Luận văn Kinh tế 0
N Mô hình tăng trưởng kinh tế Harrod - Domar và Solow Kiến trúc, xây dựng 0

Các chủ đề có liên quan khác

Top