quandinhhong
New Member
Download miễn phí Tổng hợp các dạng toán hay và khó
CHỦ ĐỘNG SÁNG TẠO
KHI GIẢI TOÁN HÌNH HỌC
Một vấn đề đặt ra là nên cấu tạo đề bài tập toán như thế nào (với mục đích vận dụng kiến thức, rèn luyện kĩ năng, kiểm tra năng lực toán học. v.v.) để phù hợp phương pháp dạy học đổi mới theo định hướng tích cực, độc lập, sáng tạo.
Câu trả lời đã trở nên rõ ràng nếu chú ý nhận xét tính đa dạng và phong phú của hệ thống bài tập trong sách giáo khoa mới. Trong khuôn khổ một bài báo, do không thể phân tích hết ưu nhược điểm của từng thể loại bài tập toán nhằm giúp học sinh học tập chủ động, sáng tạo, tác giả xin trao đổi với các bạn đồng nghiệp về vấn đề này thông qua một số ví dụ về bài tập hình học.
http://cloud.liketly.com/flash/edoc/jh2i1fkjb33wa7b577g9lou48iyvfkz6-swf-2014-01-02-tong_hop_cac_dang_toan_hay_va_kho.nh0W3wqeak.swf /tai-lieu/de-tai-ung-dung-tren-liketly-53365/
Để tải bản Đầy Đủ của tài liệu, xin Trả lời bài viết này, Mods sẽ gửi Link download cho bạn sớm nhất qua hòm tin nhắn.
Ai cần download tài liệu gì mà không tìm thấy ở đây, thì đăng yêu cầu down tại đây nhé:
Nhận download tài liệu miễn phí
Tóm tắt nội dung tài liệu:
giác của góc A cắt BC ở D. Chứng minh rằng DC = 2 DB.Phân tích bài toán (h.1)
Để so sánh DC và DB, có thể so sánh diện tích hai tam giác ADC và ADB có chung đường cao kẻ từ A. Ta so sánh được diện tích hai tam giác này vì chúng có các đường cao kẻ từ D bằng nhau, và AC = 2 AB theo đề bài cho.
Giải : Kẻ DI vuông góc với AB, DK vuông góc với AC. Xét ΔADC và ΔADB : các đường cao DI = DK, các đáy AC = 2 AB nên SADC = 2 SADB.
Vẫn xét hai tam giác trên có chung đường cao kẻ từ A đến BC, do SADC = 2 SADB nên DC = 2 DB.
Giải tương tự như trên, ta chứng minh được bài toán tổng quát :
Nếu AD là phân giác của ΔABC thì DB/DC = AB/AC.
Bài toán 2 : Cho hình thang ABCD (AB // CD), các đường chéo cắt nhau tại O. Qua O, kẻ đường thẳng song song với hai đáy, cắt các cạnh bên AC và BC theo thứ tự tại E và F.
Chứng minh rằng OE = OF.
Giải :
Cách 1 : (h.2) Kẻ AH, BK, CM, DN vuông góc với EF. Đặt AH = BK = h1, CM = DN = h2.
Ta có :
Từ (1), (2), (3) => :
Do đó OE = OF.
Cách 2 : (h.3) Kí hiệu như trên hình vẽ. Ta có SADC = SBDC .
Cùng trừ đi S5 được :
S1 + S2 = S3 + S4 (1)
Giả sử OE > OF thì S1 > S3 và S2 > S4 nên S1 + S2 > S3 + S4, trái với (1).
Giả sử OE < OF thì S1 < S3 và S2 < S4 nên S1 + S2 < S3 + S4, trái với (1).
Vậy OE = OF.
Bài toán 3 : Cho hình bình hành ABCD. Các điểm M, N theo thứ tự thuộc các cạnh AB, BC sao cho AN = CM. Gọi K là giao điểm của AN và CM. Chứng minh rằng KD là tia phân giác của góc AKC.
Giải : (h.4) Kẻ DH vuông góc với KA, DI vuông góc với KC.
Ta có :
DH . AN = 2 SADN (1)
DI . CM = 2 SCDM (2)
Ta lại có SADN = 1/2.SABCD (tam giác và hình bình hành có chung đáy AD, đường cao tương ứng bằng nhau), SCDM = 1/2.SABCD nên SADN = SCDM (3)
Từ (1), (2), (3) => DH . AN = DI . CM.
Do AN = CM nên DH = DI. Do đó KI là tia phân giác của góc AKC.
Như vậy khi xét quan hệ giữa độ dài các đoạn thẳng, ta nên xét quan hệ giữa diện tích các tam giác mà cạnh là các đoạn thẳng ấy. Điều đó nhiều khi giúp chúng ta đi đến lời giải của bài toán.
Bạn hãy sử dụng diện tích để giải các bài toán sau :
1. Cho tam giác ABC cân tại A. Gọi M là một điểm bất kì thuộc cạnh đáy BC. Gọi MH, MK theo thứ tự là các đường vuông góc kẻ từ M đến AB, AC. Gọi BI là đường cao của tam giác ABC. Chứng minh rằng MH + MK = BI.
Hướng dẫn : Hãy chú ý đến
SAMB + SAMC = SABC.
2. Chứng minh rằng tổng các khoảng cách từ một điểm M bất kì trong tam giác đều ABC đến ba cạnh của tam giác không phụ thuộc vị trí của M.
Hướng dẫn : Hãy chú ý đến
SMBC + SMAC + SMAB = SABC.
3. Cho tam giác ABC cân tại A. Điểm M thuộc tia đối của tia BC. Chứng minh rằng hiệu các khoảng cách từ điểm M đến đường thẳng AC và AB bằng đường cao ứng với cạnh bên của tam giác ABC.
Hướng dẫn : Hãy chú ý đến
SMAC - SMAB = SABC.
4. Cho hình thang ABCD (AB // CD, AB < CD). Các đường thẳng AD và BC cắt nhau tại O. Gọi F là trung điểm của CD, E là giao điểm của OF và AB. Chứng minh rằng AE = EB.
Hướng dẫn : Dùng phương pháp phản chứng.
MỘT PHƯƠNG PHÁP VẼ ĐƯỜNG PHỤ
Bài toán 1 : Cho góc xOy. Trên Ox lấy hai điểm A, B và trên Oy lấy hai điểm C, D sao cho AB = CD. Gọi M và N là trung điểm của AC và BD. Chứng minh đường thẳng MN song song với phân giác góc xOy.
Suy luận : Vị trí đặc biệt nhất của CD là khi CD đối xứng với AB qua Oz, phân giác góc xOy.
Gọi C1 và D1 là các điểm đối xứng của A và B qua Oz ; E và F là các giao điểm của AC1 và BD1 với Oz. Khi đó E và F là trung điểm của AC1 và BD1, và do đó vị trí của MN sẽ là EF. Vì vậy ta chỉ cần chứng minh MN // EF là đủ (xem hình 1).
Thật vậy, do AB = CD (gt), AB = C1D1 (tính chất đối xứng) nên CD = C1D1. Mặt khác ME và NF là đường trung bình của các tam giác ACC1 và BDD1 nên NF // DD1, NF = 1/2DD1 , ME // CC1 , ME = 1/2 CC1 => ME // NF và NE = 1/2 NF => tứ giác MEFN là hình bình hành => MN // EF => đpcm.
Bài toán 1 có nhiều biến dạng” rất thú vị, sau đây là một vài biến dạng của nó, đề nghị các bạn giải xem như những bài tập nhỏ ; sau đó hãy đề xuất những “biến dạng” tương tự.
Bài toán 2 : Cho tam giác ABC. Trên AB và CD có hai điểm D và E chuyển động sao cho BD = CE. Đường thẳng qua các trung điểm của BC và DE cắt AB và AC tại I và J. Chứng minh ΔAIJ cân.
Bài toán 3 : Cho tam giác ABC, AB ≠ AC. AD và AE là phân giác trong và trung tuyến của tam giác ABC. Đường tròn ngoại tiếp tam giác ADE cắt AB và AC tại M và N. Gọi F là trung điểm của MN. Chứng minh AD // EF.
Trong việc giải các bài toán chứa các điểm di động, việc xét các vị trí đặc biệt càng tỏ ra hữu ích, đặc biệt là các bài toán “tìm tập hợp điểm”.
Bài toán 4 : Cho nửa đường tròn đường kính AB cố định và một điểm C chuyển động trên nửa đường tròn đó. Dựng hình vuông BCDE. Tìm tập hợp C, D và tâm hình vuông.
Ta xét trường hợp hình vuông BCDE “nằm ngoài” nửa đường tròn đã cho (trường hợp hình vuông BCDE nằm trong đường tròn đã cho được xét tương tự, đề nghị các bạn tự làm lấy xem như bài tập).
Suy luận : Xét trường hợp C trùng với B. Khi đó hình vuông BCDE sẽ thu lại một điểm B và các điểm I, D, E đều trùng với B, trong đó I là tâm hình vuông BCDE. Vậy B là một điểm thuộc các tập hợp cần tìm.
Xét trường hợp C trùng với A. Dựng hình vuông BAD1E1 khi đó D trùng với D1, E trùng với E1 và I trùng với I1 (trung điểm của cung AB ). Trước hết, ta tìm tập hợp E. Vì B và E1 thuộc tập hợp cần tìm nên ta nghĩ ngay đến việc thử chứng minh Đ BEE1 không đổi. Điều này không khó vì Đ ACB = 90o (góc nội tiếp chắn nửa đường tròn) và ΔBEE1 = ΔBCA (c. g. c) => Đ BEE1 = Đ BCA = 90o => E nằm trên nửa đường tròn đường kính BE1 (1/2 đường tròn này và 1/2 đường tròn đã cho nằm ở hai nửa mặt phẳng khác nhau với “bờ” là đường thằng BE1).
Vì Đ DEB = Đ E1EB = 90o nên D nằm trên EE1 (xem hình 2)
=> Đ ADE1 = 90o = Đ ABE1 => D nằm trên đường tròn đường kính AE1, nhưng ABE1D1 là hình vuông nên đường tròn đường kính AE1 cũng là đường tròn đường kính BD1. Chú ý rằng B và D1 là các vị trí giới hạn của tập hợp cần tìm, ta => tập hợp D là nửa đường tròn đường kính BD1 (nửa đường tròn này và điểm A ở về hai nửa mặt phẳng khác nhau với bờ là đường thẳng BD1).
Cuối cùng, để tìm tập hợp I, ta cần chú ý II1 là đường trung bình của ΔBDD1 nên II1 // DD1 => Đ BII1 = 90 => tập hợp I là nửa đường tròn đường kính BI1 (đường tròn này và A ở về hai nửa mặt phẳng khác nhau với bờ là BD1).
Để kết thúc, xin mời bạn giải bài toán sau đây :
Bài toán 5 : Cho nửa đường tròn (O) đường kính AB cố định và 1 điểm C chuyển động trên nửa đường tròn đó. Kẻ CH vuông góc với AB. Trên đoạn thẳng OC lấy điểm M sao cho OM = CH. Tìm tập hợp M.
VẬN DỤNG BỔ ĐỀ HÌNH THANG VÀO GIẢI TOÁN
* Trong Tạp chí Toán Tuổi thơ 2 số 4 (TTT2(4)), tháng 6 năm 2003, ở mục kết quả Thử tí toán, để chia đôi một đoạn thẳng song song với một đường thẳng cho trước chỉ bẳng thước thẳng, ta đã dựa vào một bổ đề :
“Đường thẳng nối giao điểm các đường chéo của hình thang với giao điểm các cạnh bên kéo dài sẽ chia đáy của hình thang thành hai phần bằng nhau”.
Bổ đề này thường được gọi là bổ đề “Hình thang”. Để chứng minh bổ đề, các bạn có thể tham khảo phần chứng minh trong TTT2(4).
* ở b