dthung_2000
New Member
LINK TẢI LUẬN VĂN MIỄN PHÍ CHO AE KET-NOI
TÓM TẮT
Mục đích của đề tài này là trình bày mối quan hệ giữa các bài toán xạ ảnh phẳng và các bài toán afin phẳng. Vận dụng mối quan hệ này để giải và sáng tạo những bài toán afin phẳng
ABSTRACT
The aim of this topic is to present the relation between plane projective problems and plane affine problems. Using this relation to solve and create plane affine problems.
1. Mở đầu
Hình học xạ ảnh là một trong những môn học chuyên ngành dành cho sinh viên ngành Toán tại các trường Đại học Sư Phạm trong cả nước. Mục đích của môn học là cung cấp cho sinh viên cái nhìn tổng quan về các hình học và mối quan hệ giữa chúng. Đồng thời, hình học xạ ảnh giúp chúng ta có một phương pháp suy luận, phương pháp giải và sáng tạo một số bài toán thuộc chương trình phổ thông.
Việc ứng dụng hình học xạ ảnh vào giải và sáng tạo những bài toán hình học afin là một vấn đề cơ bản và cũng là một trong những mục đích, yêu cầu quan trọng dành cho các sinh viên khi học môn hình học xạ ảnh để hiểu rõ và vận dụng trong công tác giảng dạy sau này.
Hiện nay, trong các giáo trình Hình học xạ ảnh đã đề cập đến mối quan hệ giữa hình học xạ ảnh và hình học afin tuy nhiên còn ở mức độ khiêm tốn, việc sáng tạo các bài toán mới cũng ít được quan tâm.
Nhằm tìm hiểu sâu hơn về hình học xạ ảnh, đồng thời ứng dụng nó vào chương trình phổ thông, tui chọn đề tài nghiên cứu khoa học cho mình là: “Ứng dụng hình học xạ ảnh vào giải và sáng tạo những bài toán afin”.
2. Các mô hình
2.1. Mô hình afin của mặt phẳng xạ ảnh
Trong không gian afin A3 , ta bổ sung thêm các phần tử mới như sau:
- Mỗi đường thẳng bổ sung thêm một “điểm vô tận” sao cho hai đường thẳng song song cắt nhau tại “điểm vô tận”. Đường thẳng bổ sung thêm “điểm vô tận” được gọi là đường thẳng mở rộng.
438
Tuyển tập Báo cáo Hội nghị Sinh viên Nghiên cứu Khoa học lần thứ 7 Đại học Đà Nẵng năm 2010
- Tập hợp các “điểm vô tận” của mặt phẳng cùng nằm trên một “đường thẳng vô
tận”. Mặt phẳng được bổ sung thêm “đường thẳng vô tận” được gọi là mặt phẳng mở rộng.
Như vậy, trong mặt phẳng mở rộng ta có:
- Hai đường thẳng bất kì cùng thuộc một mặt phẳng thì luôn cắt nhau tại một điểm (hay là điểm afin thông thường, hay là điểm vô tận).
- Hai mặt phẳng phân biệt luôn có một đường thẳng chung.
- Một đường thẳng bất kì không nằm trong mặt phẳng luôn cắt mặt phẳng tại một điểm.
Xét một mặt phẳng afin A2 trong không gian afin mở rộng A3 .
Kí hiệu [V 2 ] là tập hợp các không gian vectơ con một chiều của V 2
Đặt P2 A2 V 2 khi đó, P2 là không gian xạ ảnh hai chiều (Mặt phẳng xạ ảnh).
Mặt phẳng afin A2 có bổ sung thêm các điểm vô tận được gọi là mô hình afin của mặt phẳng xạ ảnh.
2.2. Mô hình xạ ảnh của mặt phẳng afin
Xét mặt phẳng xạ ảnh P 2 liên kết với không gian vectơ V 3 , chọn đường thẳng làm đường thẳng vô tận. Khi đó, tập hợp A2 P2 \ là mặt phẳng afin và được gọi là mô hình xạ ảnh của mặt phẳng afin. Trong mô hình này, các điểm thuộc được gọi là các điểm vô tận, các điểm không thuộc được gọi là các điểm thông thường.
2.3. Sự liên hệ giữa bài toán afin phẳng và bài toán xạ ảnh phẳng
Từ sự liên hệ giữa mặt phẳng afin và mặt phẳng xạ ảnh ta suy ra được nhận xét sau về mối liên hệ giữa bài toán afin phẳng và bài toán xạ ảnh phẳng:
- Từ bài toán afin phẳng, bằng cách bổ sung vào mặt phẳng afin một đường thẳng vô tận sao cho hai đường thẳng song song cắt nhau tại một điểm nằm trên đường thẳng vô tận ta thu được một bài toán xạ
ảnh phẳng.
- Ngược lại, từ một bài toán xạ ảnh phẳng, bằng cách cố định một đường thẳng của mặt phẳng xạ ảnh làm đường thẳng vô tận ta thu được một bài toán afin
phẳng.
Nói cách khác, ta có thể dùng kiến thức của hình
A B
M
A’
B'
C’
P
I
C
439
N
Tuyển tập Báo cáo Hội nghị Sinh viên Nghiên cứu Khoa học lần thứ 7 Đại học Đà Nẵng năm 2010
học xạ ảnh để giải các bài toán afin và ngược lại.
Ví dụ: Dùng mô hình xạ ảnh của mặt phẳng afin để chứng minh định lý Desargues
Định lý Desargues. Trong không gian xạ ảnh P2 , cho hai tam giác ABC và tam giác A'B'C'. Khi đó, các đường thẳng nối các cặp đỉnh tương ứng của hai tam giác đồng quy khi và chỉ khi giao điểm các cặp cạnh tương ứng cùng nằm trên một đường thẳng.
Do Drive thay đổi chính sách, nên một số link cũ yêu cầu duyệt download. các bạn chỉ cần làm theo hướng dẫn.
Password giải nén nếu cần: ket-noi.com | Bấm trực tiếp vào Link để tải:
TÓM TẮT
Mục đích của đề tài này là trình bày mối quan hệ giữa các bài toán xạ ảnh phẳng và các bài toán afin phẳng. Vận dụng mối quan hệ này để giải và sáng tạo những bài toán afin phẳng
ABSTRACT
The aim of this topic is to present the relation between plane projective problems and plane affine problems. Using this relation to solve and create plane affine problems.
1. Mở đầu
Hình học xạ ảnh là một trong những môn học chuyên ngành dành cho sinh viên ngành Toán tại các trường Đại học Sư Phạm trong cả nước. Mục đích của môn học là cung cấp cho sinh viên cái nhìn tổng quan về các hình học và mối quan hệ giữa chúng. Đồng thời, hình học xạ ảnh giúp chúng ta có một phương pháp suy luận, phương pháp giải và sáng tạo một số bài toán thuộc chương trình phổ thông.
Việc ứng dụng hình học xạ ảnh vào giải và sáng tạo những bài toán hình học afin là một vấn đề cơ bản và cũng là một trong những mục đích, yêu cầu quan trọng dành cho các sinh viên khi học môn hình học xạ ảnh để hiểu rõ và vận dụng trong công tác giảng dạy sau này.
Hiện nay, trong các giáo trình Hình học xạ ảnh đã đề cập đến mối quan hệ giữa hình học xạ ảnh và hình học afin tuy nhiên còn ở mức độ khiêm tốn, việc sáng tạo các bài toán mới cũng ít được quan tâm.
Nhằm tìm hiểu sâu hơn về hình học xạ ảnh, đồng thời ứng dụng nó vào chương trình phổ thông, tui chọn đề tài nghiên cứu khoa học cho mình là: “Ứng dụng hình học xạ ảnh vào giải và sáng tạo những bài toán afin”.
2. Các mô hình
2.1. Mô hình afin của mặt phẳng xạ ảnh
Trong không gian afin A3 , ta bổ sung thêm các phần tử mới như sau:
- Mỗi đường thẳng bổ sung thêm một “điểm vô tận” sao cho hai đường thẳng song song cắt nhau tại “điểm vô tận”. Đường thẳng bổ sung thêm “điểm vô tận” được gọi là đường thẳng mở rộng.
438
Tuyển tập Báo cáo Hội nghị Sinh viên Nghiên cứu Khoa học lần thứ 7 Đại học Đà Nẵng năm 2010
- Tập hợp các “điểm vô tận” của mặt phẳng cùng nằm trên một “đường thẳng vô
tận”. Mặt phẳng được bổ sung thêm “đường thẳng vô tận” được gọi là mặt phẳng mở rộng.
Như vậy, trong mặt phẳng mở rộng ta có:
- Hai đường thẳng bất kì cùng thuộc một mặt phẳng thì luôn cắt nhau tại một điểm (hay là điểm afin thông thường, hay là điểm vô tận).
- Hai mặt phẳng phân biệt luôn có một đường thẳng chung.
- Một đường thẳng bất kì không nằm trong mặt phẳng luôn cắt mặt phẳng tại một điểm.
Xét một mặt phẳng afin A2 trong không gian afin mở rộng A3 .
Kí hiệu [V 2 ] là tập hợp các không gian vectơ con một chiều của V 2
Đặt P2 A2 V 2 khi đó, P2 là không gian xạ ảnh hai chiều (Mặt phẳng xạ ảnh).
Mặt phẳng afin A2 có bổ sung thêm các điểm vô tận được gọi là mô hình afin của mặt phẳng xạ ảnh.
2.2. Mô hình xạ ảnh của mặt phẳng afin
Xét mặt phẳng xạ ảnh P 2 liên kết với không gian vectơ V 3 , chọn đường thẳng làm đường thẳng vô tận. Khi đó, tập hợp A2 P2 \ là mặt phẳng afin và được gọi là mô hình xạ ảnh của mặt phẳng afin. Trong mô hình này, các điểm thuộc được gọi là các điểm vô tận, các điểm không thuộc được gọi là các điểm thông thường.
2.3. Sự liên hệ giữa bài toán afin phẳng và bài toán xạ ảnh phẳng
Từ sự liên hệ giữa mặt phẳng afin và mặt phẳng xạ ảnh ta suy ra được nhận xét sau về mối liên hệ giữa bài toán afin phẳng và bài toán xạ ảnh phẳng:
- Từ bài toán afin phẳng, bằng cách bổ sung vào mặt phẳng afin một đường thẳng vô tận sao cho hai đường thẳng song song cắt nhau tại một điểm nằm trên đường thẳng vô tận ta thu được một bài toán xạ
ảnh phẳng.
- Ngược lại, từ một bài toán xạ ảnh phẳng, bằng cách cố định một đường thẳng của mặt phẳng xạ ảnh làm đường thẳng vô tận ta thu được một bài toán afin
phẳng.
Nói cách khác, ta có thể dùng kiến thức của hình
A B
M
A’
B'
C’
P
I
C
439
N
Tuyển tập Báo cáo Hội nghị Sinh viên Nghiên cứu Khoa học lần thứ 7 Đại học Đà Nẵng năm 2010
học xạ ảnh để giải các bài toán afin và ngược lại.
Ví dụ: Dùng mô hình xạ ảnh của mặt phẳng afin để chứng minh định lý Desargues
Định lý Desargues. Trong không gian xạ ảnh P2 , cho hai tam giác ABC và tam giác A'B'C'. Khi đó, các đường thẳng nối các cặp đỉnh tương ứng của hai tam giác đồng quy khi và chỉ khi giao điểm các cặp cạnh tương ứng cùng nằm trên một đường thẳng.
Do Drive thay đổi chính sách, nên một số link cũ yêu cầu duyệt download. các bạn chỉ cần làm theo hướng dẫn.
Password giải nén nếu cần: ket-noi.com | Bấm trực tiếp vào Link để tải:
You must be registered for see links
Tags: chứng minh 2-phẳng trong không gian afin là một mặt phẳng, ứng dụng của hình học xạ ảnh trong việc chứng minh các tính chất về quan hệ song song trong chương trình hình học ở phổ thông, Dùng mo hình xạ ảnh của mặt phẳng afin để giải bài toán sau: "Chứng minh rằng hai đường chéo của hình bình hành cắt nhau tại trung điểm mỗi đường", mối quan hệ giữa hình học afin và hình học xạ ảnh, mối quan hệ giữa Hình học afin và xạ ảnh
Last edited by a moderator: