LINK TẢI LUẬN VĂN MIỄN PHÍ CHO AE KET-NOI
Download miễn phí Đồ án Tìm hiểu phép toán hình thái và ứng dụng
CHƯƠNG I 4
SƠ LƯỢC VỀ XỬ LÝ ẢNH VÀ PHÉP TOÁN HÌNH THÁI
1.1 Xử lý ảnh 4
1.2. Các quá trình của xử lý ảnh 4
1.3. Khái niệm về phép toán hình thái MORPHOLOGY 6
CHƯƠNG II 7
THAO TÁC VỚI HÌNH THÁI HỌC
2.1. Thao tác trên ảnh nhị phân 7
2.1.1. Phép dãn nhị phân(Dilation) 8
2.1.2. Phép co nhị phân (Erosion) 12
2.1.3. Các phép toán đóng mở ảnh (closing and opening) 15
2.1.4. Kĩ thuật ‘ Đánh trúng và Đánh trượt ‘ 21
2.1.5. Phép toán dãn nở có điều kiện 23
2.1.6. Kĩ thuật đếm vùng 24
2.2. Thao tác trên ảnh xám 25
2.2.1. Phép co và phép dãn 25
2.2.2. Các phép toán đóng, mở 26
2.2.3. Làm trơn 28
2.2.4. Gradient 29
2.2.5. Phân vùng theo cấu trúc 30
2.26. Phân loại cỡ đối tượng. 31
2.3. Thao tác trên ảnh mầu 32
CHƯƠNG III 34
ỨNG DỤNG CỦA HÌNH THÁI HỌC
3.1. Ứng dụng thực tiễn 34
3.2. Xương và làm mảnh 35
3.3. Các phương pháp lặp hình thái học 37
3.4. Nhận dạng biên 45
CHƯƠNG IV: 46
CÀI ĐẶT
KẾT LUẬN 49
TÀI LIỆU THAM KHẢO 50
LỜI CẢM ƠN
Trước hết em xin được bày tỏ lòng biết ơn sâu sắc đối với thầy giáo hướng dẫn PGS.TS.Ngô Quốc Tạo, Viện Công Nghệ Thông Tin-Viện khoa học và công nghệ Việt Nam đã tận tình giúp đỡ, chỉ bảo em trong thời gian vừa qua và đã dành rất nhiều thời gian quí báu để giúp em hoàn thành đề tài được giao.
Em xin gửi lời Thank đến Ban giám hiệu, các Thầy cô giáo của Trường Đại học Dân Lập Hải Phòng đã giảng dạy chúng em trong suốt quãng thời gian qua, cung cấp cho chúng em những kiến thức chuyên môn cần thiết và quý báu giúp chúng em hiểu rõ hơn các lĩnh vực đã nghiên cứu để hoàn thành đề tài được giao .
Xin Thank các bạn bè và gia đình đã động viên cổ vũ, đóng góp ý kiến, trao đổi, động viên trong suốt quá trình học cũng như làm tốt nghiệp, giúp em hoàn thành đề tài đúng thời hạn.
Hải Phòng, tháng 7 năm 2007
Sinh viên
Phan Hữu Mạnh
LỜI NÓI ĐẦU
Cùng với các ngôn ngữ, các thông tin dưới dạng hình ảnh đóng một vai trò rất quan trọng trong công việc trao đổi thông tin. Chính vì vậy những năm gần đây đã có sự kết hợp rất chặt chẽ giữa ảnh và đồ hoạ trong lĩnh vực xử lý thông tin. Trong công nghệ thông tin, xử lý ảnh chứa một vai trò rất quan trọng, bởi các ứng dụng đa dạng và phong phú của nó trong nhiều lĩnh vực khoa học. Xử lý ảnh là một bộ phận quan trọng trong việc trao đổi thông tin giữa người và máy. Nó góp phần làm cho việc quan sát ảnh trở nên tốt hơn.
Các thao tác Hình thái học (Morphology) nói chung, đặc biệt là Hình thái học số được sử dụng chủ yếu vào việc cải thiện ảnh bằng cách làm rõ (tái hiện ) những nét đặc trưng của các hình dạng, do vậy có thể tính toán được hay nhận biết được chúng một cách dễ dàng.
Đồ án này giới thiệu một số khái niệm về các thao tác Hình thái học, sử dụng các thao tác hình thái và ứng dụng của chúng.
Đồ án bao gồm :
Chương 1:Sơ lược về xử lý ảnh và Morphology.
Giới thiệu sơ bộ về xử lý ảnh và ứng dụng của nó.
Chương 2 :Thao tác với Morphology
Chương này là chương chính giới thiệu về các thao tác với ảnh nhị phân, ảnh đa cấp xám. Cụ thể đó là các thao tác như : Phép dãn, phép co, phép đóng mở ảnh, đánh trúng đánh trượt, dãn theo điều kiện và kĩ thuật đếm vùng.Trong ảnh đa cấp xám, ta còn đề cập đến phép toán làm trơn ảnh, phương pháp gradient, cách phân vùng theo cấu trúc, cách phân loại cỡ đối tượng. Bên cạnh các thao tác có kèm theo ý nghĩa của chúng, có thuật toán và có hình minh hoạ.
Chương 3:Ứng dụng của Morphology
Trong chương này của Đồ án giới thiệu về ý nghĩa của hình thái học trong thực tiễn và các ứng dụng nói chung của thao tác hình thái. Đặc biệt, trong chương này có trình bày khá chi tiết một ứng dụng của phép toán hình thái có tính thiết thực.
Chương 4:Cài đặt.
Trình bày quá trình cài đặt chi tiết một số thao tác hình thái học.
CHƯƠNG I
SƠ LƯỢC VỀ XỬ LÝ ẢNH VÀ PHÉP TOÁN HÌNH THÁI
1.1 Xử lý ảnh
Cũng như xử lý dữ liệu bằng đồ hoạ, xử lý ảnh số là một lĩnh vực của tin học ứng dụng. Xử lý dữ liệu bằng đồ họa đề cập đến những ảnh nhân tạo, các ảnh này được xem xét như là một cấu trúc dữ liệu và được tạo ra bởi các chương trình. Xử lý ảnh số bao gồm các phương pháp và kĩ thuật để biến đổi, để truyền tải hay mã hóa các ảnh tự nhiên. Mục đích của xử lý ảnh gồm:
Thứ nhất, biến đổi ảnh và làm đẹp ảnh.
Thứ hai, tự động nhận dạng ảnh hay đoán nhận ảnh và đánh giá các nội dung của ảnh.
Nhận biết và đánh giá các nội dung của ảnh (nhận dạng ) là sự phân tích một hình ảnh thành những phần có nghĩa để phân biệt đối tượng này với đối tượng khác. Dựa vào đó ta có thể mô tả cấu trúc của hình ảnh ban đầu. Có thể liệt kê một số phương pháp nhận dạng cơ bản như nhận dạng biên của một đối tượng trên ảnh, tách cạnh, phân đoạn hình ảnh, v.v... Kĩ thuật này được dùng nhiều trong y học (xử lý tế bào, nhiễm sắc thể), nhận dạng chữ trong văn bản.
1.2. Các quá trình của xử lý ảnh
Các quá trình của xử lý ảnh được tiến hành theo sơ đồ sau:
vậy một điểm ảnh không thể đươc xoá. Để làm được như vậy ta sẽ phải tạo 2 đối tượng trong đó chỉ có một đối tượng nguyên bản.
Số kết nối chính là một sự đo lường xem có bao nhiêu đối tượng mà một điểm ảnh có thể kết nối. Một cách đo lường các kết nối, được thấy như trong hình 3.3 (đẳng thức Yokoi 1973) là:
Trong đó Nk là giá trị màu của một trong các 8_láng giềng của điểm ảnh được liên kết và S= {1, 3, 5, 7}. N1 là giá trị màu của điểm ảnh bên phải của điểm ảnh trung tâm và chúng được số hoá theo thứ tự ngược chiều kim đồng hồ, xung quanh điểm ảnh trung tâm. Giá trị của Nk là 1 nếu điểm ảnh là điểm trắng (Điểm ảnh nền) và giá trị của Nk là 0 nếu điểm ảnh là điểm đen (điểm ảnh thuộc đối tượng). Điểm ảnh trung tâm là N0 và Nk=Nk - 8 nếu k>8. Một cách khác mà giá trị liên kết có thể được tính toán bằng cách xét các điểm láng giềng theo thứ tự: N1, N2,.... Ns, N1. Số các thay đổi màu(đen-trắng) được dùng đếm số vùng điểm ảnh trung tâm kết nối.
Hình 3.4 trình bày một vòng lặp (đầu tiên) của thuật toán làm mảnh áp dụng cho đối tượng có hình dạng chữ T. Một vòng lặp bao gồm một quá trình duyệt qua đối với mỗi mẫu trong 4 mẫu đã cho. Các điểm đen được đánh dấu cho thao tác xoá và điều đó dễ nhận ra trong sơ đồ một cách chính xác những gì mỗi mẫu thực hiện. Mỗi vòng lặp hoàn thành có hiệu quả xói mòn một lớp các điểm ảnh từ bên ngoài của đối tượng nhưng không giống với phép co ảnh hình thái chuẩn, việc xoá bỏ của một điểm ảnh không làm mất tính liên thông.
Để hoàn chỉnh việc làm mảnh đối tượng này đòi hỏi 13 vòng lặp (việc đếm vòng lặp cuối cùng mà không có thao tác nào ngoại trừ những hiển thị cho chúng ta kết thúc). Hình 3.5 trình bày ảnh kết quả sau mỗi vòng lặp.
Một vòng lặp thực hiện 4 lần duyệt ảnh mà trong trường hợp này duyệt qua 60x60 điểm ảnh hay 3600 điểm ảnh. Như vậy, 187, 000 điểm ảnh đã được kiểm tra chỉ để làm mảnh một ảnh đơn giản này. Điều đó trở nên tồi tệ hơn: Mỗi quá trình áp dụng mẫu xem xét kiểm tra 3 điểm ảnh và mỗi lần có sự phù hợp mẫu xảy ra, 18 điểm ảnh khác được xem xét kiểm tra (giới hạn trên là: 10108800 điểm ảnh, nhưng chỉ có một phần trong chúng được kiểm tra trong thực hành). Cuối cùng, sẽ có thêm một quá trình duyệt mỗi vòng lặp để xoá các điểm ảnh đã đánh dấu(10, 102, 000 ). Đây là một cách làm tốn kém để làm mảnh một ảnh nhỏ nhưng là phương pháp điển hình hoàn chỉnh của các thuật toán đánh dấu và xoá mẫu cơ bản.
Có một vài vấn đề cố hữu cùng với thuật toán làm mảnh này mà chúng trình bày dưới đây như như là các tạo tác trong xương. Chúng là cố hữu bởi vì chúng có khuynh hướng xuất hiện trong rất nhiều thuật toán kiểu này, các nhà nghiên cứu trong lĩnh vực này đã nhận thức được để đoán nhận chúng.
Thuật toán đầu tiên được gọi là “necking” mà trong đó một điểm hẹp ở giao điểm của hai đường thẳng được kéo dãn ra thành một đoạn thẳng nhỏ (hình 3.6a). Các phần đuôi có thể được tạo nơi không tồn tại do việc làm mảnh quá mức nơi hai đường gặp nhau ở một góc nhọn (hình 3.6b). Cuối cùng, có lẽ phổ biến, là sự khởi tạo của các đoạn thẳng phụ ngoài để chắp nối một đoạn xương thực sự. Nó được gọi là một phép chiếu giả mạo, những sợi tóc (Hình 3.6).
Stentiord đề nghị một giai đoạn tiền xử lý để cực tiểu hoá các chế tác làm mảnh đó. Do bởi các đường sơ thường được tạo ra bởi những bất quy tắc nhỏ theo đường biên ngoài của đối tượng, nên phải tiến hành làm trơn trước khi làm mảnh đễ xóa bỏ chúng. Điều cơ bản là một quá trình duyệt được thực hiện trên tất cả các điểm ảnh, xoá bỏ các điểm ảnh có hai hay ít hơn các điểm láng giềng đen và có một giá trị liên kết nhỏ hơn 2.
Để xử lý với “necking”, ông đề nghị một thủ tục được gọi là thủ tục phân giác góc nhọn (acute angle amphasis), mà trong đó các điểm ảnh gần khớp nối giữa hai dòng được tạo thành màu trắng nếu chúng khép lại tạo thành một góc nhọn. Điều này được thực hiện bằng cách dùng mẫu như đã thấy trong hình 3.7. Một sự phù hợp với bất kì mẫu nào đánh dấu điểm ảnh trung tâm cho thao tác xoá và tạo ra vòng lặp khác của một số ít các phân giác góc nhọn quan trọng chỉ dùng ba mẫu đầu tiên của mỗi kiểu. Nếu bất kỳ điểm ảnh nào đã được xoá bỏ, một lần duyệt cuối cùng chỉ dùng các mẫu đầu tiên của mỗi kiểu được thực hiện.
Do Drive thay đổi chính sách, nên một số link cũ yêu cầu duyệt download. các bạn chỉ cần làm theo hướng dẫn.
Password giải nén nếu cần: ket-noi.com | Bấm trực tiếp vào Link để tải:
Download miễn phí Đồ án Tìm hiểu phép toán hình thái và ứng dụng
CHƯƠNG I 4
SƠ LƯỢC VỀ XỬ LÝ ẢNH VÀ PHÉP TOÁN HÌNH THÁI
1.1 Xử lý ảnh 4
1.2. Các quá trình của xử lý ảnh 4
1.3. Khái niệm về phép toán hình thái MORPHOLOGY 6
CHƯƠNG II 7
THAO TÁC VỚI HÌNH THÁI HỌC
2.1. Thao tác trên ảnh nhị phân 7
2.1.1. Phép dãn nhị phân(Dilation) 8
2.1.2. Phép co nhị phân (Erosion) 12
2.1.3. Các phép toán đóng mở ảnh (closing and opening) 15
2.1.4. Kĩ thuật ‘ Đánh trúng và Đánh trượt ‘ 21
2.1.5. Phép toán dãn nở có điều kiện 23
2.1.6. Kĩ thuật đếm vùng 24
2.2. Thao tác trên ảnh xám 25
2.2.1. Phép co và phép dãn 25
2.2.2. Các phép toán đóng, mở 26
2.2.3. Làm trơn 28
2.2.4. Gradient 29
2.2.5. Phân vùng theo cấu trúc 30
2.26. Phân loại cỡ đối tượng. 31
2.3. Thao tác trên ảnh mầu 32
CHƯƠNG III 34
ỨNG DỤNG CỦA HÌNH THÁI HỌC
3.1. Ứng dụng thực tiễn 34
3.2. Xương và làm mảnh 35
3.3. Các phương pháp lặp hình thái học 37
3.4. Nhận dạng biên 45
CHƯƠNG IV: 46
CÀI ĐẶT
KẾT LUẬN 49
TÀI LIỆU THAM KHẢO 50
LỜI CẢM ƠN
Trước hết em xin được bày tỏ lòng biết ơn sâu sắc đối với thầy giáo hướng dẫn PGS.TS.Ngô Quốc Tạo, Viện Công Nghệ Thông Tin-Viện khoa học và công nghệ Việt Nam đã tận tình giúp đỡ, chỉ bảo em trong thời gian vừa qua và đã dành rất nhiều thời gian quí báu để giúp em hoàn thành đề tài được giao.
Em xin gửi lời Thank đến Ban giám hiệu, các Thầy cô giáo của Trường Đại học Dân Lập Hải Phòng đã giảng dạy chúng em trong suốt quãng thời gian qua, cung cấp cho chúng em những kiến thức chuyên môn cần thiết và quý báu giúp chúng em hiểu rõ hơn các lĩnh vực đã nghiên cứu để hoàn thành đề tài được giao .
Xin Thank các bạn bè và gia đình đã động viên cổ vũ, đóng góp ý kiến, trao đổi, động viên trong suốt quá trình học cũng như làm tốt nghiệp, giúp em hoàn thành đề tài đúng thời hạn.
Hải Phòng, tháng 7 năm 2007
Sinh viên
Phan Hữu Mạnh
LỜI NÓI ĐẦU
Cùng với các ngôn ngữ, các thông tin dưới dạng hình ảnh đóng một vai trò rất quan trọng trong công việc trao đổi thông tin. Chính vì vậy những năm gần đây đã có sự kết hợp rất chặt chẽ giữa ảnh và đồ hoạ trong lĩnh vực xử lý thông tin. Trong công nghệ thông tin, xử lý ảnh chứa một vai trò rất quan trọng, bởi các ứng dụng đa dạng và phong phú của nó trong nhiều lĩnh vực khoa học. Xử lý ảnh là một bộ phận quan trọng trong việc trao đổi thông tin giữa người và máy. Nó góp phần làm cho việc quan sát ảnh trở nên tốt hơn.
Các thao tác Hình thái học (Morphology) nói chung, đặc biệt là Hình thái học số được sử dụng chủ yếu vào việc cải thiện ảnh bằng cách làm rõ (tái hiện ) những nét đặc trưng của các hình dạng, do vậy có thể tính toán được hay nhận biết được chúng một cách dễ dàng.
Đồ án này giới thiệu một số khái niệm về các thao tác Hình thái học, sử dụng các thao tác hình thái và ứng dụng của chúng.
Đồ án bao gồm :
Chương 1:Sơ lược về xử lý ảnh và Morphology.
Giới thiệu sơ bộ về xử lý ảnh và ứng dụng của nó.
Chương 2 :Thao tác với Morphology
Chương này là chương chính giới thiệu về các thao tác với ảnh nhị phân, ảnh đa cấp xám. Cụ thể đó là các thao tác như : Phép dãn, phép co, phép đóng mở ảnh, đánh trúng đánh trượt, dãn theo điều kiện và kĩ thuật đếm vùng.Trong ảnh đa cấp xám, ta còn đề cập đến phép toán làm trơn ảnh, phương pháp gradient, cách phân vùng theo cấu trúc, cách phân loại cỡ đối tượng. Bên cạnh các thao tác có kèm theo ý nghĩa của chúng, có thuật toán và có hình minh hoạ.
Chương 3:Ứng dụng của Morphology
Trong chương này của Đồ án giới thiệu về ý nghĩa của hình thái học trong thực tiễn và các ứng dụng nói chung của thao tác hình thái. Đặc biệt, trong chương này có trình bày khá chi tiết một ứng dụng của phép toán hình thái có tính thiết thực.
Chương 4:Cài đặt.
Trình bày quá trình cài đặt chi tiết một số thao tác hình thái học.
CHƯƠNG I
SƠ LƯỢC VỀ XỬ LÝ ẢNH VÀ PHÉP TOÁN HÌNH THÁI
1.1 Xử lý ảnh
Cũng như xử lý dữ liệu bằng đồ hoạ, xử lý ảnh số là một lĩnh vực của tin học ứng dụng. Xử lý dữ liệu bằng đồ họa đề cập đến những ảnh nhân tạo, các ảnh này được xem xét như là một cấu trúc dữ liệu và được tạo ra bởi các chương trình. Xử lý ảnh số bao gồm các phương pháp và kĩ thuật để biến đổi, để truyền tải hay mã hóa các ảnh tự nhiên. Mục đích của xử lý ảnh gồm:
Thứ nhất, biến đổi ảnh và làm đẹp ảnh.
Thứ hai, tự động nhận dạng ảnh hay đoán nhận ảnh và đánh giá các nội dung của ảnh.
Nhận biết và đánh giá các nội dung của ảnh (nhận dạng ) là sự phân tích một hình ảnh thành những phần có nghĩa để phân biệt đối tượng này với đối tượng khác. Dựa vào đó ta có thể mô tả cấu trúc của hình ảnh ban đầu. Có thể liệt kê một số phương pháp nhận dạng cơ bản như nhận dạng biên của một đối tượng trên ảnh, tách cạnh, phân đoạn hình ảnh, v.v... Kĩ thuật này được dùng nhiều trong y học (xử lý tế bào, nhiễm sắc thể), nhận dạng chữ trong văn bản.
1.2. Các quá trình của xử lý ảnh
Các quá trình của xử lý ảnh được tiến hành theo sơ đồ sau:
vậy một điểm ảnh không thể đươc xoá. Để làm được như vậy ta sẽ phải tạo 2 đối tượng trong đó chỉ có một đối tượng nguyên bản.
Số kết nối chính là một sự đo lường xem có bao nhiêu đối tượng mà một điểm ảnh có thể kết nối. Một cách đo lường các kết nối, được thấy như trong hình 3.3 (đẳng thức Yokoi 1973) là:
Trong đó Nk là giá trị màu của một trong các 8_láng giềng của điểm ảnh được liên kết và S= {1, 3, 5, 7}. N1 là giá trị màu của điểm ảnh bên phải của điểm ảnh trung tâm và chúng được số hoá theo thứ tự ngược chiều kim đồng hồ, xung quanh điểm ảnh trung tâm. Giá trị của Nk là 1 nếu điểm ảnh là điểm trắng (Điểm ảnh nền) và giá trị của Nk là 0 nếu điểm ảnh là điểm đen (điểm ảnh thuộc đối tượng). Điểm ảnh trung tâm là N0 và Nk=Nk - 8 nếu k>8. Một cách khác mà giá trị liên kết có thể được tính toán bằng cách xét các điểm láng giềng theo thứ tự: N1, N2,.... Ns, N1. Số các thay đổi màu(đen-trắng) được dùng đếm số vùng điểm ảnh trung tâm kết nối.
Hình 3.4 trình bày một vòng lặp (đầu tiên) của thuật toán làm mảnh áp dụng cho đối tượng có hình dạng chữ T. Một vòng lặp bao gồm một quá trình duyệt qua đối với mỗi mẫu trong 4 mẫu đã cho. Các điểm đen được đánh dấu cho thao tác xoá và điều đó dễ nhận ra trong sơ đồ một cách chính xác những gì mỗi mẫu thực hiện. Mỗi vòng lặp hoàn thành có hiệu quả xói mòn một lớp các điểm ảnh từ bên ngoài của đối tượng nhưng không giống với phép co ảnh hình thái chuẩn, việc xoá bỏ của một điểm ảnh không làm mất tính liên thông.
Để hoàn chỉnh việc làm mảnh đối tượng này đòi hỏi 13 vòng lặp (việc đếm vòng lặp cuối cùng mà không có thao tác nào ngoại trừ những hiển thị cho chúng ta kết thúc). Hình 3.5 trình bày ảnh kết quả sau mỗi vòng lặp.
Một vòng lặp thực hiện 4 lần duyệt ảnh mà trong trường hợp này duyệt qua 60x60 điểm ảnh hay 3600 điểm ảnh. Như vậy, 187, 000 điểm ảnh đã được kiểm tra chỉ để làm mảnh một ảnh đơn giản này. Điều đó trở nên tồi tệ hơn: Mỗi quá trình áp dụng mẫu xem xét kiểm tra 3 điểm ảnh và mỗi lần có sự phù hợp mẫu xảy ra, 18 điểm ảnh khác được xem xét kiểm tra (giới hạn trên là: 10108800 điểm ảnh, nhưng chỉ có một phần trong chúng được kiểm tra trong thực hành). Cuối cùng, sẽ có thêm một quá trình duyệt mỗi vòng lặp để xoá các điểm ảnh đã đánh dấu(10, 102, 000 ). Đây là một cách làm tốn kém để làm mảnh một ảnh nhỏ nhưng là phương pháp điển hình hoàn chỉnh của các thuật toán đánh dấu và xoá mẫu cơ bản.
Có một vài vấn đề cố hữu cùng với thuật toán làm mảnh này mà chúng trình bày dưới đây như như là các tạo tác trong xương. Chúng là cố hữu bởi vì chúng có khuynh hướng xuất hiện trong rất nhiều thuật toán kiểu này, các nhà nghiên cứu trong lĩnh vực này đã nhận thức được để đoán nhận chúng.
Thuật toán đầu tiên được gọi là “necking” mà trong đó một điểm hẹp ở giao điểm của hai đường thẳng được kéo dãn ra thành một đoạn thẳng nhỏ (hình 3.6a). Các phần đuôi có thể được tạo nơi không tồn tại do việc làm mảnh quá mức nơi hai đường gặp nhau ở một góc nhọn (hình 3.6b). Cuối cùng, có lẽ phổ biến, là sự khởi tạo của các đoạn thẳng phụ ngoài để chắp nối một đoạn xương thực sự. Nó được gọi là một phép chiếu giả mạo, những sợi tóc (Hình 3.6).
Stentiord đề nghị một giai đoạn tiền xử lý để cực tiểu hoá các chế tác làm mảnh đó. Do bởi các đường sơ thường được tạo ra bởi những bất quy tắc nhỏ theo đường biên ngoài của đối tượng, nên phải tiến hành làm trơn trước khi làm mảnh đễ xóa bỏ chúng. Điều cơ bản là một quá trình duyệt được thực hiện trên tất cả các điểm ảnh, xoá bỏ các điểm ảnh có hai hay ít hơn các điểm láng giềng đen và có một giá trị liên kết nhỏ hơn 2.
Để xử lý với “necking”, ông đề nghị một thủ tục được gọi là thủ tục phân giác góc nhọn (acute angle amphasis), mà trong đó các điểm ảnh gần khớp nối giữa hai dòng được tạo thành màu trắng nếu chúng khép lại tạo thành một góc nhọn. Điều này được thực hiện bằng cách dùng mẫu như đã thấy trong hình 3.7. Một sự phù hợp với bất kì mẫu nào đánh dấu điểm ảnh trung tâm cho thao tác xoá và tạo ra vòng lặp khác của một số ít các phân giác góc nhọn quan trọng chỉ dùng ba mẫu đầu tiên của mỗi kiểu. Nếu bất kỳ điểm ảnh nào đã được xoá bỏ, một lần duyệt cuối cùng chỉ dùng các mẫu đầu tiên của mỗi kiểu được thực hiện.
Do Drive thay đổi chính sách, nên một số link cũ yêu cầu duyệt download. các bạn chỉ cần làm theo hướng dẫn.
Password giải nén nếu cần: ket-noi.com | Bấm trực tiếp vào Link để tải:
You must be registered for see links
Last edited by a moderator: