vitga_11a2

New Member
Link tải luận văn miễn phí cho ae
Luận văn ThS. Lý thuyết xác suất và thống kê toán học -- Trường Đại học Khoa học Tự nhiên. Đại học Quốc gia Hà Nội, 2015

LỜI NÓI ĐẦU
Đầu thế kỷ XX, A.A. Markov(14/6/1856 - 20/7/1922)- nhà Toán học và
Vật Lý nổi tiếng người Nga đã đưa ra một mô hình toán học để mô tả chuyển
động của các phần tử chất lỏng trong một bình kín. Về sau mô hình này được
phát triển và sử dụng trong nhiều lĩnh vực khác như cơ học, sinh học, y học,
kinh tế,vv . . . và được mang tên là quá trình Markov.
Xích Markov là trường hợp riêng của quá trình Markov( khi ta có thể
đánh số được các trạng thái).
Luận văn này đề cập tới xích Markov, du động ngẫu nhiên và ứng dụng.
Bố cục luận văn gồm ba chương, phần kết luận và danh mục tài liệu tham
khảo.
Chương một trình bày về xích Markov: các định nghĩa cơ bản, ma trận
chuyển, các ví dụ và các trường hợp riêng của xích Markov, xích Markov hấp
thụ, xích egođic, xích chính quy.
Chương hai sẽ trình bày về du động ngẫu nhiên, các đặc điểm của nó và
luật arcsin.
Chương ba sẽ trình bày các ứng dụng của xích Markov và du động ngẫu
nhiên trong thực tế.
Luận văn này được thực hiện dưới sự hướng dẫn của GS.TSKH Đặng
Hùng Thắng. Toàn thể ban lãnh đạo và các thầy cô trong khoa Toán - Cơ -
Tin học, trường Đại học Khoa học Tự nhiên - Đại học Quốc Gia Hà nội đã
giúp tui có thêm nhiều kiến thức để có thể hoàn thành luận văn và khóa học
một cách tốt đẹp. Các thầy cô phòng Sau Đại học đã tạo những điều kiện
thuận lợi giúp tui hoàn thành các thủ tục bảo vệ luận văn cũng như học tập.
Chương 1
Xích Markov
1.1 Xích Markov
1.1.1 Các định nghĩa
Giả thiết ta nghiên cứu sự tiến triển theo thời gian của một hệ vật lý
hay sinh thái nào đó. Ký hiệu X(t) là ví trí của hệ tại thời điểm t. Tập hợp
các vị trí có thể có của hệ được gọi là không gian trạng thái. Giả sử trước
thời điểm t trong tương lai t > s hệ ở trạng thái j với xác suất là bao nhiêu?
Nếu xác suất này chỉ phụ thuộc vào s, t, i, j thì điều này có nghĩa là: sự tiến
triển của hệ trong tương lai chỉ phụ thuộc vào hiện tại và độc lập
với quá khứ. Đó là tính Markov. Hệ có tính chất này được gọi là quá trình
Markov.
Ta kí hiệu E là tập gồm các giá trị của X(t) và gọi E là không gian trạng
thái của X(t). Nếu X(t) có tính Markov và E đánh số được thì X(t) được
gọi là xích Markov. Thêm vào đó, nếu t = 0,1,2,3, . . . thì ta có khái niệm
xích Markov với thời gian rời rạc, còn nếu t ∈ (0,+∞) thì ta có định nghĩa
xích Markov có thời gian liên tục.

Link Download bản DOC
Do Drive thay đổi chính sách, nên một số link cũ yêu cầu duyệt download. các bạn chỉ cần làm theo hướng dẫn.
Password giải nén nếu cần: ket-noi.com | Bấm trực tiếp vào Link để tải:

 

Các chủ đề có liên quan khác

Top