luubichtram1993

New Member
Link tải luận văn miễn phí cho ae Kết Nối
Tóm tắt nội dung

Trong khóa luận tốt nghiệp này chúng tui tập trung nghiên cứu về hạt nano từ tính Fe3O4, chúng tui tiến hành chế tạo hạt nano từ tính Fe3O4 bằng một số phương pháp khác nhau, sau đó nghiên cứu những tính chất cơ bản nhất của hạt nano từ tính Fe3O4 như phổ nhiễu xạ tia X, chụp ảnh từ kính hiển vi điện tử truyền qua và các tính chất từ. Đồng thời chúng tui cũng thực hiện các ứng dụng về sinh học và môi trường sử dụng hạt nano từ tính Fe3O4, cụ thể chúng tui đã chức năng hóa bề mặt hạt nano từ tính Fe3O4 để tạo ra nhóm chức amino, phục vụ cho các ứng dụng về y, sinh học, tiếp đó sử dụng các hạt nano từ tính Fe3O4 đã được chức năng hóa bề mặt để đánh dấu các tế bào bạch cầu ở trong máu. Và một ứng dụng khác nữa là chúng tui thử nghiệm dùng hạt nano từ tính để xử lý nước bị nhiễm bẩn.

Mục lục……………………………………………………………………..Trang
Mở đầu …………………………………………………………………………………1
CHƯƠNG 1: MỘT SỐ KHÁI NIỆM CƠ BẢN………………………………....……4
1.1. Vật liệu sắt từ…………………………………………………………...………4
1.2. Tính chất siêu thuận từ………………………………………………….………4
1.3. Ôxit sắt từ……………………………………………………………...………..7
CHƯƠNG 2: CÁC PHƯƠNG PHÁP THỰC NGHIỆM…………………….……… 10
2.1. Các phương pháp chế tạo mẫu………………………………………...………10
2.1.1. Phương pháp đồng kết tủa……………………………………………………...10
2.1.2. Phương pháp hóa học để chế tạo hạt nano từ tính Fe3O4………………..….….11
2.1.3. Phương pháp vi nhũ tương……………………………………………………..12
2.2. Các phương pháp phân tích…………………………………………………….13
2.2.1.Phương pháp nghiên cứu tính chất từ bằng hệ
từ kế mẫu rung (VSM)…………………………….…………………...………13
2.2.2. Phân tích cấu trúc bằng nhiễu xạ tia X…………….….………………… ..….14
2.2.3.Kính hiển vi điện tử truyền qua (TEM)…………………………………………16
2.2.4. Phương pháp xác định nống độ Asenic bằng máy đo phổ
hấp thụ nguyên tử (AAS)……………………………………………...…..…...17
2.2.5. Kính hiển vi huỳnh quang……………………………………………...………17
2.2.6. Máy đo phổ hấp thụ (UV-Vis)………………………………………..……….19
CHƯƠNG 3: NGHIÊN CỨU TÍNH CHẤT VÀ ỨNG DỤNG CỦA HẠT
NANO TỪ TÍNH Fe3O4……………………………………………………….…….20
3.1. Một số tính chất của hạt nano từ tính Fe3O4 ………………..………….…….…20
3.1.1. Kết quả đo phổ nhiễu xạ tia X của mẫu Fe3O4 ……………………….….……20
3.1.2. Ảnh TEM của mẫu hạt nano từ tính Fe3O4......................................................22
3.1.3. Tính chất từ..................................................................................................... 23
3.2. Ứng dụng hạt nano từ tính Fe3O4 trong đánh dấu
và tách chiết tế bào..........................................................................................24

3.2.1. Chức năng hóa bề mặt hạt nano từ tính Fe3O4................................................24
3.2.2. Đánh dấu tế bào và tách chiết tế bào...............................................................28
3.2.2.1. Quá trình gắn kết hạt nano từ tính Fe3O4 với kháng thể antiCD4...................28
3.2.2.2. Gắn kết với tế bào bạch cầu.............................................................................30
3.2.2.3. Nhận xét...........................................................................................................33
3.3. Ứng dụng hạt nano Fe3O4 trong xử lý nước bị nhiễm bẩn..............................33
3.3.1. Chế tạo mẫu…………………………........…………………………..………33
3.3.2. Ứng dụng trong nước bị nhiễm asenic……………………………….....……35
Kết uận…………………………………………………………………….....…...….37


Mở đầu

Trên thế giới nói chung và ở Việt Nam nói riêng, cụm từ Khoa học và công nghệ nano dường như đã trở nên khá quen thuộc. Ngày nay công nghệ nano đang là một hướng nghiên cứu thu hút được sự quan tâm của rất nhiều quốc gia, các tổ chức khoa học, các trường đại học, các trung tâm nghiên cứu và rất nhiều người quan tâm… Công nghệ nano đã được triển khai nghiên cứu rộng khắp trên phạm vi toàn cầu với nhiễu lĩnh vực khác nhau và bước đầu đã cho ra đời những sản phẩm ứng dụng công nghệ nano.
Trong lĩnh vực khoa học và công nghệ nano thì vật liệu nano luôn là một nhánh nghiên cứu dành được sự quan tâm đặc biệt của các nhà khoa học, đối với vật liệu nano chúng mang trong mình những đặc điểm và tính chất mới lạ, thứ nhất phải kể đến là hiệu ứng chuyển tiếp cổ điển-lượng tử, các quy luật vật lý cổ điển không còn đúng đối với các hệ kích thước nhỏ mà thay vào đó là các quy luật vật lý lượng tử mà hệ quả quan trọng là các đại lượng vật lý bị lượng tử hóa. Thứ hai là hiệu ứng bề mặt: kích thước càng giảm thì phần vật chất tập trung ở bề mặt chiếm một tỉ lệ càng lớn, hay nói một cách khác là diện tích bề mặt tính cho một đơn vị khối lượng càng lớn, và cuối cùng là hiệu ứng kích thước tới hạn, mỗi loại vật liệu thì luôn tồn tại một kích thước mà tại đó xảy ra sự thay đổi lớn về tính chất (chuyển pha), thông thường kích thước này là 100 nm, chính sự tác động của ba yếu tố trên đã tạo ra những thay đổi lớn về tính chất đối với các vật liệu có kích thước nano. Cũng chính những điều này thu hút được sự nghiên cứu rộng rãi nhằm tạo ra các vật liệu nano có tính chất ưu việt hơn so với các loại vật liệu khác với mong muốn ứng dụng được chúng để chế tạo ra các sản phẩm mới với chức năng vượt trội phục vụ trong nhiều lĩnh vực và mục đích khác nhau.
Khoa học và công nghệ nano có phạm vi rất rộng và được chia ra thành nhiều hướng và lĩnh vực khác nhau. Trong số đó vật liệu nano từ tính đã được nghiên cứu tương đối rộng rãi, đó chính là các vật liệu từ tính có kích thước nano, nó có thể tồn tại ở nhiều dạng khác nhau như màng mỏng, các vật liệu tổ hợp, hay ở dạng hạt.
Chúng tui chọn hạt nano từ tính Fe3O4 làm hướng nghiên cứu chính bởi những hạt nano từ tính có từ tính tương đối tốt, Ms=90 emu/g, mặt khác các hạt nano từ tính Fe3O4 thì rất thân thiện với môi trường và có tính tương hợp sinh học cao, một lý do nữa để chúng tui lựa chọn đó là các phương pháp chế tạo hạt nano từ tính là tương đối đơn giản, chi phí lại thấp và các hạt nano từ tính Fe3O4 cũng tương đối ổn định trong môi trường bên ngoài. Vật liệu này cũng đã được nghiên cứu khá lâu trên thế giới cũng như tại Việt Nam về các tính chất vật lý và hóa học. Chính vì các lý do trên chúng tui đã chọn hạt nano từ tính Fe3O4 làm hướng nghiên cứu chính và thử nghiệm trong các ứng dụng của mình.
Trong khóa luận này chúng tui tập trung nghiên cứu các tính chất cơ bản của hạt nano từ tính Fe3O4, cũng như nghiên cứu thử nghiệm một số phương pháp khác nhau như phương pháp đồng kết tủa, phương pháp vi nhũ tương và một số phương pháp hóa học khác trong việc chế tạo hạt nano từ tính Fe3O4, đồng thời nghiên cứu và đo đạc một số tính chất cơ bản của hạt nano từ tính Fe3O4 như đo phổ nhiễu xạ tia X (XRD), chụp ảnh mẫu bằng kính hiển vi điện tử truyền qua (TEM) và đo đường cong từ hóa của mẫu bằng hệ đo từ kế mẫu rung.
Hạt nano từ tính đã được chế tạo thành công bằng nhiều phương pháp khác nhau, và chúng đã được đem phục vụ các ứng dụng trong nhiều mục đích. Một hướng ứng dụng được quan tâm nhiều nhất đó là ứng dụng hạt nano từ tính Fe3O4 trong các ứng dụng về y sinh học. Các vật liệu ứng dụng trong sinh học thường yêu cầu vật liệu nano ở dạng hạt và phải có tính siêu thuận từ. Giới hạn siêu thuận từ phụ thuộc vào từ độ bão hòa và dị hướng từ tinh thể, trong đa số trường hợp thì giới hạn này từ 5-30nm. Vật liệu siêu thuận từ có giá trị từ độ tương đối cao và bị từ hóa mạnh dưới tác dụng của từ trường ngoài và bị khử từ hoàn toàn khi không có từ trường ngoài tác dụng (không có từ dư). Hai yếu tố trên là hai yếu tố cần thiết đối với các ứng dụng trong y sinh học để có thể tránh sự kết tụ của các hạt từ. Ngoài ra thì độc tính, độ tương hợp sinh học, tính đồng nhất của kích thước hạt, ổn định trong môi trường khác nhau cũng là những vấn đề cần quan tâm. Các ứng dụng của hạt nano từ tính trong sinh học bao gồm phân tách và chọn lọc tế bào, dẫn thuốc đến đích nhờ từ trường, nung nóng cục bộ nhờ từ trường ngoài xoay chiều, tác nhân tăng độ tương phản cho ảnh cộng hưởng từ hạt nhân.
Trong khuôn khổ của khóa luận này chúng tui cũng tiến hành ứng dụng hạt nano từ tính Fe3O4 trong việc đánh dấu và tách chiết tế bào. Các tế bào được đánh dấu và tách chiết là các tế bào bạch cầu CD4+ T ở trong máu, các hạt nano từ tính Fe3O4 sau khi được chế tạo sẽ được chức năng hóa bề mặt bằng APTS (3-aminopropyl triethoxysilane) để tạo ra nhóm NH2 (amino) trên bề mặt hạt nano, tiếp đó những hạt nano này được bọc một lớp kháng thể phát huỳnh quang antiCD4+ T, chúng sẽ liên kết với các tế bào bạch cầu ở trong máu và nhờ đó ta có thể tách được các tế bào ra khỏi môi trường của chúng bằng cách sử dụng từ tính cũng như quan sát được hình ảnh của các tế bào này trên một kính hiển vi huỳnh quang thông thường, thậm chí có thể xác định được số lượng tế bào bạch cầu. Điều này có thể được ứng dụng để đếm số lượng tế bào bạch cầu trong máu của các bệnh nhân nhiễm HIV.
Thêm một ứng dụng nữa được chúng tui nghiên cứu trong khóa luận này đó là nghiên cứu thử nghiệm ứng dụng hạt nano từ tính Fe3O4 cho mục đích xử lý nước bị nhiễm bẩn, ở Việt Nam hiện nay một vấn đề môi trường đang được quan tâm của toàn xã hội đó là việc các nguồn nước được sử dụng bị nhiễm asenic với nồng độ khá cao, gây ảnh hưởng xấu tới sức khỏe của người dân. Một số địa phương như ngoại thành Hà Nội, Hà Nam… nồng độ asenic trong nước vượt mức cho phép nhiều lần. Asenic hay còn gọi là thạch tín, tan được ở trong nước và rất độc [8], nó làm thay đổi cân bằng hệ thống enzim của cơ thể, tác động xấu tới hệ tuần hoàn và thần kinh, người uống nước có nhiễm asen lâu ngày sẽ có nguy cơ bị ung thư, viêm răng khớp, bệnh tim mạch, cao huyết áp và các bệnh ngoài da khác. Chính vì thực trạng này chúng tui tiến hành nghiên cứu ứng dụng hạt nano từ tính Fe3O4 để loại bỏ asenic trong nước. Đây là những ứng dụng lần đầu tiên ở Việt Nam. Những kết quả bước đầu cho thấy khả năng hấp thụ asenic của hạt nano từ tính Fe3O4 là khá cao trong khi lượng hạt nano từ tính cần sử dụng là tương đối nhỏ và đặc biệt là có thể tái sử dụng.

CHƯƠNG 1
MỘT SỐ KHÁI NIỆM CƠ BẢN
1.1. Vật liệu sắt từ
Vật liệu sắt từ là các vật liệu trong đó có các mô men từ sắp xếp song song với nhau. Vì vậy trạng thái sắt từ cũng là trạng thái từ hoá tự phát. Theo lý thuyết Weiss thì ngay cả khi không có từ trường ngoài trong vật liệu sắt từ đã có sự từ hoá tự phát đến bão hoà. Nguyên nhân của sự từ hoá tự phát đó là do các mô men từ tương tác với nhau rất mạnh mẽ. Tương tác này tương đương với tác dụng của từ trường ngoài lớn cỡ 107 Oe làm cho các mô men từ có xu hướng sắp xếp song song với nhau ngay cả khi có tác dụng của khích thích nhiệt tại nhiệt độ phòng.
Để giải thích sự khử từ của vật liệu sắt từ ở từ trường bằng không, Weiss cho rằng sự từ hoá tự phát đến bão hoà trong loại vật liệu này chỉ xảy ra trong từng domain (mỗi domain là một vùng từ hoá vĩ mô) còn giữa các domain với nhau thì các mô men từ lại sắp xếp một cách hỗn loạn làm cho từ độ tổng cộng của vật bằng không khi không có từ trường ngoài.
Với các vật liệu sắt từ tồn tại trong nhiệt độ tại đó xảy ra sự chuyển pha sắt từ - thuận từ nhiệt độ này gọi là nhiệt độ Curie sắt từ (Tc). Dưới nhiệt độ Tc tương tác giữa các mô men từ thắng được kích thích nhiệt do đó vật liệu thể hiện tính sắt từ. Trên nhiệt độ Tc năng lượng kích thích nhiệt đủ lớn để phá vỡ trạng thái liên kết sắt từ giữa các mô men từ làm cho phân bố các mô men từ trở lên hỗn loạn và vật liệu thể hiện tính chất thuận từ.
Ngày nay rất nhiều loại vật liệu có tính sắt từ đã được tìm ra và ứng dụng rộng rãi trong kỹ thuật và đời sống như: các kim loại (các kim loại chuyển tiếp và kim loại đất hiếm), các hợp kim (hợp kim Fe-Si, Fe-Ni hay còn gọi là hợp kim permalloy,..v.v.), các ôxít. Vật liệu sắt từ với từ tính mạnh và khả năng ứng dụng lớn là đối tượng nghiên cứu được quan tâm hàng đầu trong lĩnh vực từ học.
1.2. Tính chất siêu thuận từ
Đối với một vật liệu sắt từ thì khi ở kích thước lớn các hạt có xu hướng phân chia thành các domain từ để giảm năng lượng dị hướng hình dạng và ta có các hạt đa domain. Khi kích thước hạt giảm xuống dưới một giá trị nào đó (thông thường khoảng 100 nm) thì mỗi hạt là một domain từ nói cách khác ta có các hạt đơn domain có mô men từ sắp xếp theo các phương dễ từ hoá dưới tác dụng của năng lượng dị hướng từ. Tiếp tục giảm kích thước hạt qua một giới hạn tiếp theo (thông thường giới hạn này cỡ 20 nm) sẽ xảy ra tình huống trong đó năng lượng kích thích nhiệt (có xu hướng phá vỡ sự định hướng mô men từ của các hạt) trở nên trội hơn năng lượng dị hướng từ (có tác dụng định hướng mô men từ của các hạt). Khi đó mô men từ của các hạt sẽ định hướng một cách hỗn do đó mô men từ tổng cộng bằng không. Chỉ khi có từ trường ngoài tác dụng thì mới có sự định hướng của mô men từ của các hạt và tạo ra mô men từ tổng cộng khác không. Tính chất này là đặc trưng cho các vật liệu thuận từ nhưng ở đây mỗi hạt nanô có chứa hàng vạn nguyên tử nên cũng có mô men từ hàng vạn lần lớn hơn mô men từ nguyên tử vì vậy tính chất này được gọi là tính chất siêu thuận từ.Đường cong từ hoá siêu thuận từ cũng tuân theo hàm Langevin như trường hợp thuận từ. Đường cong này có hai đặc điểm đó là: lực kháng từ Hc = 0, từ độ dư Mr = 0 nghĩa là không có hiệu ứng trễ. Điều này là hoàn toàn khác so với đường cong từ trễ sắt từ khi hạt có kích thước lớn. Hình 1.1 diễn tả sự thay đổi đường cong từ hoá của vật liệu sắt từ khi kích thước hạt giảm. Trong giới hạn đơn domain khi kích thước hạt giảm thì Hc giảm cho đến khi Hc = 0, kích thước tại đó Hc = 0 chính là giới hạn siêu thuận từ. Hình 1.2 biểu diễn sự thay đổi của Hc khi đường kính hạt giảm [14].
Ngoài ra sự hấp thụ asenic còn phụ thuộc vào pH trong khoảng từ 4-10. Ở các giá trị pH cao hơn thì sự hấp thụ giảm tương đối lớn. Sau khi hấp thụ asen thì các hạt nano được khuấy ở pH 13 để nghiên cứu quá trình giải phóng. Các hạt nano được tách ra bởi một nam châm và nồng độ asen trong dung dịch được kiểm chứng bởi ASS. Kết quả cho thấy 90% asenic đã được giải phóng khỏi các hạt nano. Các hạt nano sau khi giải phóng thì không chỉ ra bất cứ khác biệt nào về khả năng hấp thụ và giải phóng asenic. Quá trình hấp thụ và giải phóng được lặp lại bốn lần, chứng tỏ rằng các hạt nano có thể được sử dụng lại trong việc tách bỏ asenic.
Những ứng dụng này lần đầu tiên được tiến hành thử nghiệm ở Việt Nam và bước đầu đã cho những thành quả nhất định, lượng asenic mà các hạt nano từ tính hấp thụ được là tương đối cao và triển vọng đưa những ứng dụng tương tự như trong thí nghiệm này vào trong thực tế để xử lý các nguồn nước bị nhiễm bẩn.

Bảng 3.2: Nồng độ asenic (µg/l) còn lại trong nước sau khi được tách lọc bởi 1g/L Co-ferrites như là một hàm của thời gian khuấy.
Time (min) x = 0.05 x = 0.1 x = 0.2 x = 0.5

Kết luận
1. Các hạt nano từ tính Fe3O4 được chế tạo thử nghiệm với một số phương pháp khác nhau, phương pháp đồng kết tủa tạo ra được các hạt nano kích thước trung bình từ 10-16 nanomet, điều này được chứng tỏ qua phổ nhiễu xạ tia X và ảnh TEM. Đồng thời cũng khẳng định tính chất siêu thuận từ của hạt nano từ tính Fe3O4. Phương pháp hóa học thì cho ra các hạt Fe3O4 với kích thước to hơn các hạt được chế tạo bằng phương pháp đồng kết tủa, và đang tiếp tục nghiên cứu thêm một phương pháp khác để chế tạo hạt nano từ tính Fe3O4 với độ đồng nhất cao hơn, đó là phương pháp vi nhũ tương.
2. Chức năng hóa bề mặt hạt nano từ tính Fe3O4 bằng APTS và tạo ra được nhóm chức amino trên bề mặt hạt. Cùng với đó là việc đánh dấu và tách chiết thành công các tế bào bạch cầu CD4+ T ở trong máu bằng các hạt nano từ tính Fe3O4 được bọc bởi kháng thể phát huỳnh quang antiCD4+ T. Các hình ảnh chụp từ kính hiển vi huỳnh quang cho các hình ảnh rõ nét các tế bào bạch cầu này, độ phát huỳnh quang của các tế bào bạch cầu đã được gắn với hạt nano từ tính Fe3O4 được bọc bởi kháng thể phát huỳnh quang antiCD4+ T cũng cao hơn gấp 2,6 lần so với trường hợp chỉ gắn với kháng thế phát huỳnh quang thông thường. Nhờ có các hạt nano từ tính nên có thể tách được các tế bào bạch cầu ra khỏi môi trường chứa chúng mà không bị lẫn các tế bào khác và làm giàu tế bào bạch cầu do đó có thể đếm được số lượng tế bào bạch cầu một cách chính xác hơn.
3. Ứng dụng các hạt nano Fe1-xCoxFe2O4 (Co-ferrites) với x=0; 0,05; 0,1; 0,2; 0.5 trong việc xử lý các nguồn nước bị nhiễm asenic, các kết quả thực nghiệm cho thấy với 0,25-1,5 g hạt nano từ tính sử dụng cho 1L nước nhiễm asenic sẽ làm giảm nồng độ asenic từ 0,1 mg/l xuống còn 10 g/l, sau đó các hạt nano từ tính còn có thể tái sử dụng được.

Link Download bản DOC
Do Drive thay đổi chính sách, nên một số link cũ yêu cầu duyệt download. các bạn chỉ cần làm theo hướng dẫn.
Password giải nén nếu cần: ket-noi.com | Bấm trực tiếp vào Link để tải:

 
Last edited by a moderator:

Download miễn phí Khóa luận Hạt nano từ tính Fe3O4: tính chất và ứng dụng để đánh dấu tế bào và xử lí nước bị nhiễm bẩn





Mục lục .Trang
Mở đầu 1
CHƯƠNG 1: MỘT SỐ KHÁI NIỆM CƠ BẢN . 4
1.1. Vật liệu sắt từ . 4
1.2. Tính chất siêu thuận từ . 4
1.3. Ôxit sắt từ . .7
CHƯƠNG 2: CÁC PHƯƠNG PHÁP THỰC NGHIỆM . 10
2.1. Các phương pháp chế tạo mẫu . 10
2.1.1. Phương pháp đồng kết tủa .10
2.1.2. Phương pháp hóa học để chế tạo hạt nano từ tính Fe3O4 . . .11
2.1.3. Phương pháp vi nhũ tương .12
2.2. Các phương pháp phân tích .13
2.2.1.Phương pháp nghiên cứu tính chất từ bằng hệ
từ kế mẫu rung (VSM) . . 13
2.2.2. Phân tích cấu trúc bằng nhiễu xạ tia X . . . .14
2.2.3.Kính hiển vi điện tử truyền qua (TEM) 16
2.2.4. Phương pháp xác định nống độ Asenic bằng máy đo phổ
hấp thụ nguyên tử (AAS) . . .17
2.2.5. Kính hiển vi huỳnh quang . 17
2.2.6. Máy đo phổ hấp thụ (UV-Vis) . .19
CHƯƠNG 3: NGHIÊN CỨU TÍNH CHẤT VÀ ỨNG DỤNG CỦA HẠT
NANO TỪ TÍNH Fe3O4 . .20
3.1. Một số tính chất của hạt nano từ tính Fe3O4 . . . 20
3.1.1. Kết quả đo phổ nhiễu xạ tia X của mẫu Fe3O4 . . 20
3.1.2. Ảnh TEM của mẫu hạt nano từ tính Fe3O4.22
3.1.3. Tính chất từ. 23
3.2. Ứng dụng hạt nano từ tính Fe3O4 trong đánh dấu
và tách chiết tế bào.24
 
3.2.1. Chức năng hóa bề mặt hạt nano từ tính Fe3O4.24
3.2.2. Đánh dấu tế bào và tách chiết tế bào.28
3.2.2.1. Quá trình gắn kết hạt nano từ tính Fe3O4 với kháng thể antiCD4.28
3.2.2.2. Gắn kết với tế bào bạch cầu.30
3.2.2.3. Nhận xét.33
3.3. Ứng dụng hạt nano Fe3O4 trong xử lý nước bị nhiễm bẩn.33
3.3.1. Chế tạo mẫu . . 33
3.3.2. Ứng dụng trong nước bị nhiễm asenic . 35
Kết uận . . .37
 
 
 



Để tải bản Đầy Đủ của tài liệu, xin Trả lời bài viết này, Mods sẽ gửi Link download cho bạn sớm nhất qua hòm tin nhắn.
Ai cần download tài liệu gì mà không tìm thấy ở đây, thì đăng yêu cầu down tại đây nhé:
Nhận download tài liệu miễn phí

Tóm tắt nội dung tài liệu:

h chất feri từ. Mô men từ của các ion kim loại trong hai phân mạng A và B phân bố phản song song điều này được giải thích nhờ sự phụ thuộc góc của tương tác siêu trao đổi : AÔB = 125°9΄, AÔA = 79°38΄, BÔB = 90° do đó tương tác phản sắt từ giữa A và B là phát triển nhất [9, 13]. Trong Fe3O4 bởi vì ion Fe3+ có mặt ở cả hai phân mạng với số lượng như nhau nên mô men từ chỉ do Fe2+ quyết định. Mỗi phân tử Fe3O4 có mô men từ tổng cộng là 4μB (μB là magneton Bohr nguyên tử, trong hệ đơn vị chuẩn quốc tế SI thì μB = 9,274.10-24 J/T). Hình 1.5 là cấu hình spin của phân tử Fe3O4. Giống như các vật liệu sắt từ thì vật liệu feri từ cũng có sự chuyển pha sang trạng thái thuận từ tại một nhiệt độ gọi là nhiệt độ Curie (Tc), mà nhiệt độ này với Fe3O4 là 850 K [14]. Riêng đối với Fe3O4 còn có thêm một sự chuyển pha khác đó là chuyển pha cấu trúc tại nhiệt độ 118 K còn gọi là nhiệt độ Verwey [14]. Dưới nhiệt độ này Fe3O4 chuyển sang cấu trúc tam tà làm tăng điện trở suất
của vật liệu này vì vậy nhiệt độ Verwey thường được dùng để phân biệt Fe3O4 với các ôxít sắt khác.
Hình 1.5: Cấu hình spin của Fe3O4
Ôxít sắt từ có phạm vi ứng dụng hết sức rộng rãi như ghi từ, in ấn, sơn phủ,..v..v. Các ứng dụng này thì đều tập trung vào vật liệu Fe3O4 dạng hạt. Hiện nay người ta đang đặc biệt quan tâm nghiên cứu ứng dụng hạt Fe3O4 có kích thước nanô bởi vì về mặt từ tính thì khi ở kích thước nhỏ như vậy vật liệu này thể hiện tính chất hoàn toàn khác so với khi ở dạng khối đó là tính chất siêu thuận từ. Phần tiếp theo sẽ trình bày kỹ hơn về tính chất này của các hạt nanô.
CHƯƠNG 2
CÁC PHƯƠNG PHÁP THỰC NGHIỆM
2.1. Các phương pháp chế tạo mẫu
Có nhiều phương pháp đã được nghiên cứu thử nghiệm để chế tạo hạt nano từ tính Fe3O4, sau đây là một số phương pháp chúng tui đã thực hiện để chế tạo hạt nano từ tính.
2.1.1 Phương pháp đồng kết tủa
Phương pháp đồng kết tủa được lựa chọn để chế tạo hạt nano từ tính Fe3O4 vì đây là phương pháp đơn giản, dễ chế tạo, cho kết quả nhanh và chi phí thấp. Việc chế tạo hạt nano từ tính Fe3O4 bằng phương pháp đồng kết tủa dựa vào phản ứng hóa học [10]:
2FeCl3 + FeCl2 + 8NH3 + H2O = Fe3O4 + 8NH4Cl (2.1)
Các hạt Fe3O4 được tạo thành khi cho dung dịch hỗn hợp hai muối sắt là FeCl2 và FeCl3 có cùng tốc độ kết tủa với tỷ lệ mol tương ứng là: FeCl2 : FeCl3 = 1 : 2. Dung dịch hai muối sắt được phản ứng với dung dịch kiềm mạnh NH4OH 35%, ở nhiệt độ phòng. Máy khuấy từ được sử dụng để phản ứng xảy ra triệt để hơn. Phản ứng xảy ra trong môi trường khí N2. Hạt nano được tạo thành dưới dạng kết tủa màu đen và sau phản ứng được rửa bằng 4-5 lần bằng nước cất để đảm bảo loại bỏ hết các chất không mong muốn như muối NH4Cl mới tạo thành hay các muối sắt và NH4OH còn dư sau phản ứng. Nước cất trong thí nghiệm đều được sục khí N2 trong vòng từ 15-30 phút trước khi sử dụng. Sau khi rửa ta thu được các hạt Fe3O4 ở trong nước.
Thời gian đầu các hạt Fe3O4 phân tán trong nước tạo thành một thể huyền phù. Tuy nhiên sau một thời gian thì các hạt này sẽ kết tụ và lắng đọng làm cho hệ không còn ở trạng thái như trước nữa. Ngoài ra các hạt nano Fe3O4 còn dễ bị ôxi hóa ở điều kiện bình thường do Fe2+ tác dụng với oxi.
Hạt nano từ tính có kích thước 10-15nm được chế tạo bằng phương pháp đồng kết tủa ion Fe3+ và Fe2+ bằng OH- tại nhiệt độ phòng trong môi trường khí N2 để có thể tránh việc hạt nano bị ô xi hóa. Quy trình chế tạo được tiến hành như sau: Lấy 2,33 g FeCl3.6 H2O và 0,86 g FeCl2.4H2O (tức tỉ phần mol Fe3+ / Fe2+ = 2 ) hòa trong 80 ml dung dịch nước cất 2 lần (nồng độ của Fe2+ là 0,1M) bằng máy khuấy từ. Sau đó lọc dung dịch thu được bằng giấy lọc định lượng để loại bỏ hết các tạp chất không mong muốn, dung dịch sau khi lọc được đựng trong bình 250 ml. 13,4 ml NH4OH 25% NH3 được pha loãng thành 50 ml và được đổ vào bình triết. Sau đó nhỏ dung dịch NH4OH từ từ vào hỗn hợp 2 muối sắt với tốc độ 1 giọt/1 giây trong điều kiện có sử dụng máy khuấy từ để khuấy hỗn hợp 2 muối sắt đồng thời với quá trình nhỏ dung dịch NH4OH. Sau khi dung dịch NH4OH được nhỏ hết thì tiếp tục khuấy trong vòng 10-15 phút để phản ứng xảy ra triệt để. Toàn bộ quá trình phản ứng xảy ra ở điều kiện nhiệt độ phòng. Ngoài ra để giảm thiểu các tác nhân bên ngoài mẫu có thể được chế tạo trong môi trường khí N2, toàn bộ quy trình tương tự như trên chỉ khác là phản ứng xảy ra trong môi trường khí N2 và mẫu sau khi phản ứng cũng được giữ trong môi trường khí N2.
Sau khi phản ứng xảy ra hoàn tất chúng tui tiến hành lọc rửa mẫu từ 4-5 lần bằng nước cất, khuấy đều hỗn hợp sau phản ứng rồi đặt một miếng nam châm ở đáy cốc, các hạt Fe3O4 bị từ tính hút sẽ lắng đọng xuống dưới, sau một thời gian thì loại bỏ phần dung dịch ở trên để loại bỏ các tạp chất đồng thời giữ lại hạt Fe3O4. Sau đó lại lặp lại như vậy cho đủ 4-5 lần. Kết quả cuối cùng ta thu được các hạt Fe3O4 phân tán trong nước.
2.1.2. Phương pháp hóa học để chế tạo hạt nano từ tính Fe3O4
Phương pháp này dựa trên phản ứng thủy phân muối FeSO4 để tạo ra hạt nano sắt từ. Quy trình thực hiện tiến hành theo các bước cụ thể sau. Sau khi rửa sạch các công cụ thí nghiệm thì dung dịch muối FeSO4 được pha chế bằng cách cho 17,71 g muối FeSO4 hòa với 200 ml nước cất, tương tự 10,11 KNO3 hòa vào 100 ml nước cất, và 13,81 g KOH pha với 50 ml nước cất, ba dung dịch trên được pha chế ở ba cốc thí nghiệm khác nhau, sau khi pha xong các dung dịch trên được lọc bằng giấy lọc định lượng trước khi được đưa vào tiến hành thí nghiệm.
Các dung dịch đã được chuẩn bị như trên được đổ vào một bình thủy tinh 1L theo thứ tự ở trên và được khuấy bằng máy khuấy từ gia nhiệt. Hỗn hợp phản ứng được gia nhiệt tới 90oC và được giữ trong vòng 2h, toàn bộ thí nghiệm được tiến hành trong môi trường khí nitơ.
Sau 2h, khí nitơ được tắt và bình thủy tinh chứa hỗn hợp sau phản ứng được đưa ra khỏi máy khuấy từ và để ở nhiệt độ phòng trong một giờ.
Tiếp theo, hỗn hợp này được rửa 2 lần bằng nước cất (2L), 1 lần với axit nitric 1M (1L), và cuối cùng là rửa với 2 lần nữa với nước cất (2L). Phần chất rắn màu đen được tách xuống dưới bằng cách sử dụng một miếng nam châm, sau đó loại bỏ đi phần dung dịch ở trên, tiếp tục quá trình rửa bằng nước cất nếu thấy cần thiết cho tới khi dung dịch ở phía trên đã trở nên sạch. Cuối cùng, toàn bộ sản phẩm được giữ trong 1L nước, thông thường phương pháp này cho ta 10 g sản phẩm.
Theo phân tích thì các hạt được tạo ra là Fe3O4 nhưng với kích thước lớn hơn so với phương pháp đồng kết tủa và các hạt nano Fe3O4 sau khi được tạo thành rất dễ bị kết đám lại với nhau chỉ sau thời gian ngắn.
2.1.3. Phương pháp vi nhũ tương
Ngoài việc sử dụng phương pháp đồng kết tủa để chế tạo hạt nano, chúng tui có thử nghiệm một phương pháp khác để chế tạo hạt Fe3O4, đó là phương pháp vi nhũ tương.
Trước hết thì vi nhũ tương là hệ nhũ tương đặc biệt v...
bạn cho mình xin tài liệu này được không ạ!!
 
Các chủ đề có liên quan khác
Tạo bởi Tiêu đề Blog Lượt trả lời Ngày
D tổng hợp các hạt nano từ có các lớp phủ polyme tương thích sinh học để ứng dụng trong y sinh học Khoa học Tự nhiên 0
H Cấu trúc tinh thể và tính chất từ của hạt nano pherit spinen NiY0,1Fe1,9O4 chế tạo bằng phương pháp sol- gel Khoa học Tự nhiên 0
D Nghiên cứu chế tạo và tính chất từ của hạt nano FePd Khoa học Tự nhiên 0
B Nghiên cứu chế tạo và chức năng hóa bề mặt các hạt nano quang – từ ZnS/Mn-Fe3O4 Khoa học Tự nhiên 0
W Nghiên cứu tính chất Điện - Từ của hạt và màng mỏng Au có kích thước nano Khoa học Tự nhiên 0
M Nghiên cứu và thử nghiệm hạt từ nano được chức năng hóa bề mặt trong chẩn đoán Virus Epstein Barr Khoa học Tự nhiên 0
T Chức năng hóa bề mặt hạt nano ôxít sắt từ Fe3O4 với 1,1 ’ -Carbonyldiimidazole (CDI) nhằm ứng dụng cho cấy ghép tủy Công nghệ thông tin 0
C Nghiên cứu một số tính chất cơ bản của hệ hạt nano từ bằng phương pháp mô phỏng trên máy tính Công nghệ thông tin 0
X Tổng hợp hạt nano từ Fe3O4@SiO2@Au cấu trúc lõi vỏ để ứng dụng trong y sinh học Công nghệ thông tin 0
H Khảo sát ảnh hưởng của nồng độ tiền chất lên kích thước và từ tính hạt nano oxide sắt từ Fe3O4 Tài liệu chưa phân loại 0

Các chủ đề có liên quan khác

Top