Nana_InLove
New Member
Download Luận văn Nghiên cứu điều khiển tối ưu cho cánh tay robot bằng phương pháp quy hoạch phi tuyến
MỤC LỤC
Lời cam đoan . 1
Mục lục . 2
Danh mục các thuật ngữ, kí hiệu, từ viết tắt. 5
Danh mục các bảng biểu . 7
Danh mục các hình vẽ, đồ thị . 8
Lời nói đầu . 9
CHưƠNG I. GIỚI THIỆU CHUNG VỀ ĐIỀU KHIỂN TỐI ưU . 11
1.1. Địnhnghĩa. 11
1.2. Điều kiện hạn chế . 11
1.3. Bài toán điều khiển tối ưu . . 12
1.3.1. Điều khiển tối ưu tĩnh . . 12
1.3.1.1. Mô tả toán học . . 13
1.3.1.2. Biểu diễn hình học . . 13
1.3.1.3. Giả thiết cho lời giải . . 14
1.3.1.4. Một số phương pháp tìm nghiệm 16
1.3.2. Điều khiển tối ưu động . 24
1.3.2.1. Phương pháp biến phân . . 24
1.3.2.2. Phương pháp quy hoạch động của Bellman . 29
1.3.2.3. Nguyên lý cực đại . . 34
CHưƠNG 2: ROBOT CÔNG NGHIỆP VÀ GIỚI THIỆU BÀI TOÁN ĐIỀU
KHIỂN ĐỘNG HỌC NGưỢC ROBOT. 39
2.1. Tổng quan về robot công nghiệp. 39
2.1.1. Tự động hóa và robot công nghiệp . . 43
2.1.2. Các đặc tính của robot công nghiệp . . 45
2.1.2.1. Tải trọng . 45
2.1.2.2. Tầm với . 45
2.1.2.3. Độ phân giải không gian 45
2.1.2.4. Độ chính xác . 46
2.1.2.5. Độ lặp lại . . 47
2.1.2.6. Độ nhún 47
2.2. Chất lượng quá trình làm việc và các thông số điều khiển 48
2.2.1. Yêu cầu về chất lượng trong điều khiển Robot . 48
2.2.2. Giới thiệu bài toán điều khiển động học ngược Robot . 49
2.2.3. Bài toán động học trên quan điểm điều khiển thời gian thực . 54
2.2.3.1. Yêu cầu về thời gian thực trong điều khiển động học robot 54
2.2.3.2. Hiệu quả giải thuật trên quan điểm điều khiển thời gian thực . 56
CHưƠNG 3: GIẢI BÀI TOÁN ĐIỀU KHIỂN TỐI ưU CHO CÁNH
TAYROBOT. 58
3.1. Thành lập bài toán điều khiển . 58
3.1.1. Mô hình đối tượng . . . 58
3.1.2. Phiếm hàm mục tiêu . 61
3.1.2.1. Bài toán tối ưu về độ chính xác về vị trí và hướng của khâu chấp hành 61
3.1.2.2. Bài toán di chuyển tối thiểu . . 62
3.1.3. Điều kiện giới hạn của các biến. 63
3.2. Khả năng ứng dụng của giải thuật trên máy tính . 64
3.3. Thành lập bài toán cho một số dạng robot . 65
3.3.1. Robot cơ cấu 3 khâu phẳng (3 khớp quay) . 65
3.3.1.1. Phương trình động học (Mô hình toán học). 65
3.3.1.2. Hàm mục tiêu . 66
3.3.1.3. Điều kiện hạn chế . 67
3.3.2. Robot Elbow (Sáu bậc tự do toàn khớp quay) . . . 67
3.3.2.1. Phương trình động học (Mô hình toán học) . 67
3.3.2.2. Hàm mục tiêu . 68
3.3.2.3. Điều kiện hạn chế . . . 69
3.3.3. Robot Puma (Sáu bậc tự do toàn khớp quay) 69
3.3.3.1. Phương trình động học (Mô hình toán học) . . 69
3.3.3.2. Hàm mục tiêu . . 71
3.3.3.3. Điều kiện hạn chế . 71
3.4. Giới thiệu bài toán quy hoạch phi tuyến với ràng buộc dạng chuẩn và nghiệm tối ưu của nó . . 72
3.4.1. Bài toán quy hoạch phi tuyến . . . 72
3.4.2. Nhận định chung . . 72
3.4.3. Tính chính xác . 73
3.5. Lời giải bài toán điều khiển tối ưu cho Robot cơ cấu 3 khâu phẳng
(3 khớp quay). 73
3.5.1. Khởi tạo một số ma trận thế ngẫu nhiên cho lời giải . 74
3.5.2. Ứng dụng Optimization Toolbox trong Matlab để giải bài toán . 74
3.5.2.1.Giới thiệu Optimization Toolbox trong Matlab . 74
3.5.2.2. Sử dụng Optimization Toolbox trong Matlab để giải bài toán . 77
3.5.3. Ứng dụng phương pháp giải thuật di truyền (GA) giải bài toán . 79
3.5.3.1. Giới thiệu phương pháp giải thuật di truyền (GA) . 79
3.5.3.2. Các kỹ thuật trong giải thuật di truyền GA 80
3.5.3.3. Giải bài toán bằng phương pháp di truyền (GA) . . 84
3.5.4. Sử dụng phương pháp khai triển thành đa thức để giải bài toán 86
3.5.4.1. Đặt vấn đề . 86
3.5.4.2. Đa thức nội suy . . 87
3.5.4.3. Đa thức nội suy Lagrange . 88
3.5.4.4. Áp dụng cho bài toán cụ thể . 88
CHưƠNG 4. KẾT LUẬN VÀ KIẾN NGHỊ 92
4.1. Các kết quả nghiên cứu của Luận văn . . . 92
4.2. Một số kiến nghị cho hướng nghiên cứu tiếp theo . 93
Tài liệu tham khảo . 94
Tóm tắt . . 97
http://cloud.liketly.com/flash/edoc/jh2i1fkjb33wa7b577g9lou48iyvfkz6-swf-2013-10-26-luan_van_nghien_cuu_dieu_khien_toi_uu_cho_canh_tay.m46qNCo9rY.swf /tai-lieu/de-tai-ung-dung-tren-liketly-42393/
Để tải bản DOC Đầy Đủ xin Trả lời bài viết này, Mods sẽ gửi Link download cho bạn sớm nhất qua hòm tin nhắn.
Ai cần download tài liệu gì mà không tìm thấy ở đây, thì đăng yêu cầu down tại đây nhé:
Nhận download tài liệu miễn phí
P2 0.5924 -0.3586 0.5887 0.0343
P3 0.5288 -0.0465 0.2633 0.0043
3.5.4. Sử dụng phƣơng pháp khai triển thành đa thức để giải bài toán
3.5.4.1. Đặt vấn đề
Trên đây là một số phương pháp giải bài toán động học ngược Robot, tuy
nhiên hàm mục tiêu như chúng ta thấy là hàm siêu việt.
Vì vậy, để loại bỏ hàm siêu việt của hàm mục tiêu, ta đưa ra hướng nghiên
cứu sử dụng phương pháp khai triển thành đa thức để giải bài toán. Sau khi khai
triển thành đa thức ta lại có thể áp dụng được các phương pháp trên để giải bài toán.
Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên
87
3.5.4.2. Đa thức nội suy
Trong toán học ta thường gặp các bài toán liên quan đến khảo sát và tính giá trị
các hàm y = f(x) nào đó. Tuy nhiên trong thực tế có trường hợp ta không xác định
được biểu thức của hàm f(x) mà chỉ nhận được các giá trị rời rạc: y0, y1, …., yn tại
các điểm tương ứng x0, x1, …..,xn.
Vấn đề đặt ra là làm thế nào để xác định giá trị của hàm tại các điểm còn lại.
Ta phải xây dựng hàm
(x) sao cho:
(xi) = yi = f(xi) với i 0,n
(x) f (x) x
thuộc [a,b] và x
xi
- Bài toán xây dựng hàm
(x) gọi là bài toán nội suy
- Hàm
(x) gọi là hàm nội suy của f(x) trên [a, b]
- Các điểm xi ( i 0,n ) gọi là các mốc nội suy
Hàm nội suy cũng được áp dụng trong trường hợp đã xác định được biểu thức
của f(x) nhưng nó quá phức tạp trong việc khảo sát, tính toán. Khi đó ta tìm hàm nội
suy xấp xỉ với nó để đơn giản phân tích và khảo sát hơn. Trong trường hợp đó ta
chọn n+1 điểm bất kỳ làm mốc nội suy và tính giá trị tại các điểm đó, từ đó xây
dựng được hàm nội suy ( bằng công thức Lagrange, Newton, …).
Trường hợp tổng quát: hàm nội suy
(x) không chỉ thoả công thức mãn giá trị
hàm tại mốc nội suy mà còn thoả mãn giá trị đạo hàm các cấp tại mốc đó.
0 0 1 1
0 0 1 1
'(x ) f '(x ); '(x ) f '(x );............
''(x ) f ''(x ); ''(x ) f ''(x );..........
Nghĩa là ta tìm hàm nội suy của f(x) thoả mãn bảng giá trị sau:
xi x0 x1 ...... xn
yi =f(xi) y0 y1 ...... yn
y’i =f’(xi) y’0 y’1 ...... y’n
y’’i =f’’(xi) y’’0 y’’1 ...... y’’n
...... ...... ...... ...... ......
Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên
88
3.5.4.3. Đa thức nội suy Lagrange
Giả sử f(x) nhận giá trị yi tại các điểm tương ứng xi ( i 0,n ), khi đó đa
thức nội suy Lagrange của f(x) là đa thức bậc n và được xác định theo công thức
sau:
n
i
n i n
i 0
L (X) y p (x)
Trong đó:
i 0 1 i 1 i 1 n
n
i 0 i 1 i i 1 i i 1 i n
(x x )(x x )....(x x )(x x ).(x x ) TS(x)
P (x)
(x x )(x x )......(x ).(x x )...(x x ) MS
Đặt W(x) = (x-x0)(x-x1)…(x-xn)
Suy ra: TS(x) =
i
W(x)
x-x
; MS = W’(xi)
n
i
n
i=0 i i
y
L (X) W(x)
(x-x )W'(x )
3.5.4.4. Áp dụng cho bài toán cụ thể
Khai triển Sin(x) tại 4 nút nội suy (-pi≤ x ≤ pi):
x -pi -pi/2 0 pi/2 pi
Sin(x) 0 -1 0 1 0
xpixpix
pi
pixxpix
pi
x
pipipipipipipi
pixpixxpix
pipipipipipipi
pixpixxpix
pipipipi
pixpixpixpi
pipipipipipipi
pixpixpixx
pipipipipipipi
pixpixxpix
x
).2/).(.(
2
)2/.()..(
2
)sin(
0*
)2/).(2/).(0).((
)2/).(2/).(0).((
1*
)2/).(2/2/).(02/).(2/(
)).(2/).(0).((
0*
)0).(2/0).(0).(2/0(
)).(2/).().(2/(
)1(*
)2/).(2/).(2/2/).(02/
)).().(2/).(0(
0*
)).(2/).(0).(2/(
)).(2/).(0).(2/(
)sin(
22
4
22
4
Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên
89
Khai triển cos(x) tại 4 nút nội suy (-pi≤ x ≤ pi):
x -pi -pi/2 0 pi/2 pi
cos(x) -1 0 1 0 -1
)
4
).(.(
4
).().
4
.(
.3
2
)cos(
)1(*
)2/).(2/).(0).((
)2/).(2/).(0).((
)1(*
)2/).(2/).(0).((
)2/).(2/).(0).((
0*
)2/).(2/).(02/).(2/2/(
)).().(0).(2/(
)1(*
)0).(0).(2/0).(2/0(
)).().(2/).(2/(
0*
)2/).(2/2/).(02/).(2/(
)).(2/).(0).((
)cos(
2
222
4
2
2
4
pi
xpix
pi
pixx
pi
x
pi
x
pipipipipipipi
pixpixxpix
pipipipipipipi
pixpixxpix
pipipipipipipi
pixpixxpix
pipipipi
pixpixpixpix
pipipipipipipi
pixpixxpix
x
Áp dụng cho hàm mục tiêu (3.14b):
- Khai triển cos(q):
cos(q(1))=-2/(3*pi^4)*(q(1)^2-pi^2/4)*q(1)*(q(1)-pi)+4/pi^4*(q(1)^2-
pi^2)*(q(1)^2-pi^2/4)-2/(3*pi^4)*(q(1)^2-pi^2/4)*q(1)*(q(1)+pi);
cos((q(1)+q(2)))=-2/(3*pi^4)*((q(1)+q(2))^2-pi^2/4)*(q(1)+q(2))*((q(1)+q(2))-
pi)+4/pi^4*((q(1)+q(2))^2-pi^2)*((q(1)+q(2))^2-pi^2/4)-
2/(3*pi^4)*((q(1)+q(2))^2-pi^2/4)*(q(1)+q(2))*((q(1)+q(2))+pi);
cos((q(1)+q(2)+q(3)))=-2/(3*pi^4)*((q(1)+q(2)+q(3))^2-
pi^2/4)*(q(1)+q(2)+q(3))*((q(1)+q(2)+q(3))-pi)+4/pi^4*((q(1)+q(2)+q(3))^2-
pi^2)*((q(1)+q(2)+q(3))^2-pi^2/4)-2/(3*pi^4)*((q(1)+q(2)+q(3))^2-
pi^2/4)*(q(1)+q(2)+q(3))*((q(1)+q(2)+q(3))+pi);
Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên
90
- Khai triển sin(q):
sin(q(1))=2/(pi^4)*(q(1)^2-pi^2)*q(1)*(q(1)-pi/2)-2/pi^4*(q(1)^2-
pi^2)*(q(1)+pi/2)*q(1);
sin((q(1)+q(2)))=2/(pi^4)*((q(1)+q(2))^2-pi^2)*(q(1)+q(2))*((q(1)+q(2))-pi/2)-
2/pi^4*((q(1)+q(2))^2-pi^2)*((q(1)+q(2))+pi/2)*(q(1)+q(2));
sin((q(1)+q(2)+q(3)))=2/(pi^4)*((q(1)+q(2)+q(3))^2-
pi^2)*(q(1)+q(2)+q(3))*((q(1)+q(2)+q(3))-pi/2)-2/pi^4*((q(1)+q(2)+q(3))^2-
pi^2)*((q(1)+q(2)+q(3))+pi/2)*(q(1)+q(2)+q(3));
Phiếm hàm mục tiêu:
Q = ((-2/(3*pi^4)*((q(1)+q(2)+q(3))^2-
pi^2/4)*(q(1)+q(2)+q(3))*((q(1)+q(2)+q(3))-pi)+4/pi^4*((q(1)+q(2)+q(3))^2-
pi^2)*((q(1)+q(2)+q(3))^2-pi^2/4)-2/(3*pi^4)*((q(1)+q(2)+q(3))^2-
pi^2/4)*(q(1)+q(2)+q(3))*((q(1)+q(2)+q(3))+pi))-0.8)^2+(((90*(-
2/(3*pi^4)*(q(1)^2-pi^2/4)*q(1)*(q(1)-pi)+4/pi^4*(q(1)^2-pi^2)*(q(1)^2-pi^2/4)-
2/(3*pi^4)*(q(1)^2-pi^2/4)*q(1)*(q(1)+pi))+(80*(-2/(3*pi^4)*((q(1)+q(2))^2-
pi^2/4)*(q(1)+q(2))*((q(1)+q(2))-pi)+4/pi^4*((q(1)+q(2))^2-pi^2)*((q(1)+q(2))^2-
-pi^2/4)-2/(3*pi^4)*((q(1)+q(2))^2-pi^2/4)*(q(1)+q(2))*((q(1)+q(2))+pi))+(70*(-
2/(3*pi^4)*((q(1)+q(2)+q(3))^2-pi^2/4)*(q(1)+q(2)+q(3))*((q(1)+q(2)+q(3))-
pi)+4/pi^4*((q(1)+q(2)+q(3))^2-pi^2)*((q(1)+q(2)+q(3))^2-pi^2/4)-
2/(3*pi^4)*((q(1)+q(2)+q(3))^2-
pi^2/4)*(q(1)+q(2)+q(3))*((q(1)+q(2)+q(3))+pi)))-
190)^2+(((90*(2/(pi^4)*(q(1)^2-pi^2)*q(1)*(q(1)-pi/2)-2/pi^4*(q(1)^2-
pi^2)*(q(1)+pi/2)*q(1))+(80*(2/(pi^4)*((q(1)+q(2))^2-
pi^2)*(q(1)+q(2))*((q(1)+q(2))-pi/2)-2/pi^4*((q(1)+q(2))^2-
pi^2)*((q(1)+q(2))+pi/2)*(q(1)+q(2)))+(70*(2/(pi^4)*((q(1)+q(2)+q(3))^2-
pi^2)*(q(1)+q(2)+q(3))*((q(1)+q(2)+q(3))-pi/2)-2/pi^4*((q(1)+q(2)+q(3))^2-
pi^2)*((q(1)+q(2)+q(3))+pi/2)*(q(1)+q(2)+q(3)))-115)^2 → min
Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên
91
KẾT LUẬN CHƢƠNG 3:
Trong chương này, Luận văn đưa ra hướng nghiên cứu chuyển bài toán động
học ngược robot về bài toán tối ưu và sử dụng một số phương pháp giải bài toán tối
ưu phi tuyến để giải bài toán động học ngược robot, đưa ra hướng nghiên cứu sử
dụng phương pháp khai triển thành đa thức để giải bài toán, cụ thể như sau:
Thành lập được bài toán điều khiển: Xây dựng được mô hình toán học, đưa ra
phiếm hàm mục tiêu và điều kiện hạn chế của các biến khớp của một số loại
Robot.
Giới thiệu và sử dụng một số phương pháp giải bài toán động học ngược Robot:
- Với phương pháp sử dụng Optimization Toolbox trong Matlab để giải bài toán:
+ Sử dụng hàm fmincon, Nghiệm của bài toán tiến tới điểm cực trị toàn cục, kết
quả của bài toán tìm được trong thời gian ngắn.
Để hàm mục tiêu tiến tới min, phương pháp trên đòi hỏi khoảng nghiệm reo
phải nằm g...
Download miễn phí Luận văn Nghiên cứu điều khiển tối ưu cho cánh tay robot bằng phương pháp quy hoạch phi tuyến
MỤC LỤC
Lời cam đoan . 1
Mục lục . 2
Danh mục các thuật ngữ, kí hiệu, từ viết tắt. 5
Danh mục các bảng biểu . 7
Danh mục các hình vẽ, đồ thị . 8
Lời nói đầu . 9
CHưƠNG I. GIỚI THIỆU CHUNG VỀ ĐIỀU KHIỂN TỐI ưU . 11
1.1. Địnhnghĩa. 11
1.2. Điều kiện hạn chế . 11
1.3. Bài toán điều khiển tối ưu . . 12
1.3.1. Điều khiển tối ưu tĩnh . . 12
1.3.1.1. Mô tả toán học . . 13
1.3.1.2. Biểu diễn hình học . . 13
1.3.1.3. Giả thiết cho lời giải . . 14
1.3.1.4. Một số phương pháp tìm nghiệm 16
1.3.2. Điều khiển tối ưu động . 24
1.3.2.1. Phương pháp biến phân . . 24
1.3.2.2. Phương pháp quy hoạch động của Bellman . 29
1.3.2.3. Nguyên lý cực đại . . 34
CHưƠNG 2: ROBOT CÔNG NGHIỆP VÀ GIỚI THIỆU BÀI TOÁN ĐIỀU
KHIỂN ĐỘNG HỌC NGưỢC ROBOT. 39
2.1. Tổng quan về robot công nghiệp. 39
2.1.1. Tự động hóa và robot công nghiệp . . 43
2.1.2. Các đặc tính của robot công nghiệp . . 45
2.1.2.1. Tải trọng . 45
2.1.2.2. Tầm với . 45
2.1.2.3. Độ phân giải không gian 45
2.1.2.4. Độ chính xác . 46
2.1.2.5. Độ lặp lại . . 47
2.1.2.6. Độ nhún 47
2.2. Chất lượng quá trình làm việc và các thông số điều khiển 48
2.2.1. Yêu cầu về chất lượng trong điều khiển Robot . 48
2.2.2. Giới thiệu bài toán điều khiển động học ngược Robot . 49
2.2.3. Bài toán động học trên quan điểm điều khiển thời gian thực . 54
2.2.3.1. Yêu cầu về thời gian thực trong điều khiển động học robot 54
2.2.3.2. Hiệu quả giải thuật trên quan điểm điều khiển thời gian thực . 56
CHưƠNG 3: GIẢI BÀI TOÁN ĐIỀU KHIỂN TỐI ưU CHO CÁNH
TAYROBOT. 58
3.1. Thành lập bài toán điều khiển . 58
3.1.1. Mô hình đối tượng . . . 58
3.1.2. Phiếm hàm mục tiêu . 61
3.1.2.1. Bài toán tối ưu về độ chính xác về vị trí và hướng của khâu chấp hành 61
3.1.2.2. Bài toán di chuyển tối thiểu . . 62
3.1.3. Điều kiện giới hạn của các biến. 63
3.2. Khả năng ứng dụng của giải thuật trên máy tính . 64
3.3. Thành lập bài toán cho một số dạng robot . 65
3.3.1. Robot cơ cấu 3 khâu phẳng (3 khớp quay) . 65
3.3.1.1. Phương trình động học (Mô hình toán học). 65
3.3.1.2. Hàm mục tiêu . 66
3.3.1.3. Điều kiện hạn chế . 67
3.3.2. Robot Elbow (Sáu bậc tự do toàn khớp quay) . . . 67
3.3.2.1. Phương trình động học (Mô hình toán học) . 67
3.3.2.2. Hàm mục tiêu . 68
3.3.2.3. Điều kiện hạn chế . . . 69
3.3.3. Robot Puma (Sáu bậc tự do toàn khớp quay) 69
3.3.3.1. Phương trình động học (Mô hình toán học) . . 69
3.3.3.2. Hàm mục tiêu . . 71
3.3.3.3. Điều kiện hạn chế . 71
3.4. Giới thiệu bài toán quy hoạch phi tuyến với ràng buộc dạng chuẩn và nghiệm tối ưu của nó . . 72
3.4.1. Bài toán quy hoạch phi tuyến . . . 72
3.4.2. Nhận định chung . . 72
3.4.3. Tính chính xác . 73
3.5. Lời giải bài toán điều khiển tối ưu cho Robot cơ cấu 3 khâu phẳng
(3 khớp quay). 73
3.5.1. Khởi tạo một số ma trận thế ngẫu nhiên cho lời giải . 74
3.5.2. Ứng dụng Optimization Toolbox trong Matlab để giải bài toán . 74
3.5.2.1.Giới thiệu Optimization Toolbox trong Matlab . 74
3.5.2.2. Sử dụng Optimization Toolbox trong Matlab để giải bài toán . 77
3.5.3. Ứng dụng phương pháp giải thuật di truyền (GA) giải bài toán . 79
3.5.3.1. Giới thiệu phương pháp giải thuật di truyền (GA) . 79
3.5.3.2. Các kỹ thuật trong giải thuật di truyền GA 80
3.5.3.3. Giải bài toán bằng phương pháp di truyền (GA) . . 84
3.5.4. Sử dụng phương pháp khai triển thành đa thức để giải bài toán 86
3.5.4.1. Đặt vấn đề . 86
3.5.4.2. Đa thức nội suy . . 87
3.5.4.3. Đa thức nội suy Lagrange . 88
3.5.4.4. Áp dụng cho bài toán cụ thể . 88
CHưƠNG 4. KẾT LUẬN VÀ KIẾN NGHỊ 92
4.1. Các kết quả nghiên cứu của Luận văn . . . 92
4.2. Một số kiến nghị cho hướng nghiên cứu tiếp theo . 93
Tài liệu tham khảo . 94
Tóm tắt . . 97
http://cloud.liketly.com/flash/edoc/jh2i1fkjb33wa7b577g9lou48iyvfkz6-swf-2013-10-26-luan_van_nghien_cuu_dieu_khien_toi_uu_cho_canh_tay.m46qNCo9rY.swf /tai-lieu/de-tai-ung-dung-tren-liketly-42393/
Để tải bản DOC Đầy Đủ xin Trả lời bài viết này, Mods sẽ gửi Link download cho bạn sớm nhất qua hòm tin nhắn.
Ai cần download tài liệu gì mà không tìm thấy ở đây, thì đăng yêu cầu down tại đây nhé:
Nhận download tài liệu miễn phí
Tóm tắt nội dung:
0355P2 0.5924 -0.3586 0.5887 0.0343
P3 0.5288 -0.0465 0.2633 0.0043
3.5.4. Sử dụng phƣơng pháp khai triển thành đa thức để giải bài toán
3.5.4.1. Đặt vấn đề
Trên đây là một số phương pháp giải bài toán động học ngược Robot, tuy
nhiên hàm mục tiêu như chúng ta thấy là hàm siêu việt.
Vì vậy, để loại bỏ hàm siêu việt của hàm mục tiêu, ta đưa ra hướng nghiên
cứu sử dụng phương pháp khai triển thành đa thức để giải bài toán. Sau khi khai
triển thành đa thức ta lại có thể áp dụng được các phương pháp trên để giải bài toán.
Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên
87
3.5.4.2. Đa thức nội suy
Trong toán học ta thường gặp các bài toán liên quan đến khảo sát và tính giá trị
các hàm y = f(x) nào đó. Tuy nhiên trong thực tế có trường hợp ta không xác định
được biểu thức của hàm f(x) mà chỉ nhận được các giá trị rời rạc: y0, y1, …., yn tại
các điểm tương ứng x0, x1, …..,xn.
Vấn đề đặt ra là làm thế nào để xác định giá trị của hàm tại các điểm còn lại.
Ta phải xây dựng hàm
(x) sao cho:
(xi) = yi = f(xi) với i 0,n
(x) f (x) x
thuộc [a,b] và x
xi
- Bài toán xây dựng hàm
(x) gọi là bài toán nội suy
- Hàm
(x) gọi là hàm nội suy của f(x) trên [a, b]
- Các điểm xi ( i 0,n ) gọi là các mốc nội suy
Hàm nội suy cũng được áp dụng trong trường hợp đã xác định được biểu thức
của f(x) nhưng nó quá phức tạp trong việc khảo sát, tính toán. Khi đó ta tìm hàm nội
suy xấp xỉ với nó để đơn giản phân tích và khảo sát hơn. Trong trường hợp đó ta
chọn n+1 điểm bất kỳ làm mốc nội suy và tính giá trị tại các điểm đó, từ đó xây
dựng được hàm nội suy ( bằng công thức Lagrange, Newton, …).
Trường hợp tổng quát: hàm nội suy
(x) không chỉ thoả công thức mãn giá trị
hàm tại mốc nội suy mà còn thoả mãn giá trị đạo hàm các cấp tại mốc đó.
0 0 1 1
0 0 1 1
'(x ) f '(x ); '(x ) f '(x );............
''(x ) f ''(x ); ''(x ) f ''(x );..........
Nghĩa là ta tìm hàm nội suy của f(x) thoả mãn bảng giá trị sau:
xi x0 x1 ...... xn
yi =f(xi) y0 y1 ...... yn
y’i =f’(xi) y’0 y’1 ...... y’n
y’’i =f’’(xi) y’’0 y’’1 ...... y’’n
...... ...... ...... ...... ......
Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên
88
3.5.4.3. Đa thức nội suy Lagrange
Giả sử f(x) nhận giá trị yi tại các điểm tương ứng xi ( i 0,n ), khi đó đa
thức nội suy Lagrange của f(x) là đa thức bậc n và được xác định theo công thức
sau:
n
i
n i n
i 0
L (X) y p (x)
Trong đó:
i 0 1 i 1 i 1 n
n
i 0 i 1 i i 1 i i 1 i n
(x x )(x x )....(x x )(x x ).(x x ) TS(x)
P (x)
(x x )(x x )......(x ).(x x )...(x x ) MS
Đặt W(x) = (x-x0)(x-x1)…(x-xn)
Suy ra: TS(x) =
i
W(x)
x-x
; MS = W’(xi)
n
i
n
i=0 i i
y
L (X) W(x)
(x-x )W'(x )
3.5.4.4. Áp dụng cho bài toán cụ thể
Khai triển Sin(x) tại 4 nút nội suy (-pi≤ x ≤ pi):
x -pi -pi/2 0 pi/2 pi
Sin(x) 0 -1 0 1 0
xpixpix
pi
pixxpix
pi
x
pipipipipipipi
pixpixxpix
pipipipipipipi
pixpixxpix
pipipipi
pixpixpixpi
pipipipipipipi
pixpixpixx
pipipipipipipi
pixpixxpix
x
).2/).(.(
2
)2/.()..(
2
)sin(
0*
)2/).(2/).(0).((
)2/).(2/).(0).((
1*
)2/).(2/2/).(02/).(2/(
)).(2/).(0).((
0*
)0).(2/0).(0).(2/0(
)).(2/).().(2/(
)1(*
)2/).(2/).(2/2/).(02/
)).().(2/).(0(
0*
)).(2/).(0).(2/(
)).(2/).(0).(2/(
)sin(
22
4
22
4
Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên
89
Khai triển cos(x) tại 4 nút nội suy (-pi≤ x ≤ pi):
x -pi -pi/2 0 pi/2 pi
cos(x) -1 0 1 0 -1
)
4
).(.(
4
).().
4
.(
.3
2
)cos(
)1(*
)2/).(2/).(0).((
)2/).(2/).(0).((
)1(*
)2/).(2/).(0).((
)2/).(2/).(0).((
0*
)2/).(2/).(02/).(2/2/(
)).().(0).(2/(
)1(*
)0).(0).(2/0).(2/0(
)).().(2/).(2/(
0*
)2/).(2/2/).(02/).(2/(
)).(2/).(0).((
)cos(
2
222
4
2
2
4
pi
xpix
pi
pixx
pi
x
pi
x
pipipipipipipi
pixpixxpix
pipipipipipipi
pixpixxpix
pipipipipipipi
pixpixxpix
pipipipi
pixpixpixpix
pipipipipipipi
pixpixxpix
x
Áp dụng cho hàm mục tiêu (3.14b):
- Khai triển cos(q):
cos(q(1))=-2/(3*pi^4)*(q(1)^2-pi^2/4)*q(1)*(q(1)-pi)+4/pi^4*(q(1)^2-
pi^2)*(q(1)^2-pi^2/4)-2/(3*pi^4)*(q(1)^2-pi^2/4)*q(1)*(q(1)+pi);
cos((q(1)+q(2)))=-2/(3*pi^4)*((q(1)+q(2))^2-pi^2/4)*(q(1)+q(2))*((q(1)+q(2))-
pi)+4/pi^4*((q(1)+q(2))^2-pi^2)*((q(1)+q(2))^2-pi^2/4)-
2/(3*pi^4)*((q(1)+q(2))^2-pi^2/4)*(q(1)+q(2))*((q(1)+q(2))+pi);
cos((q(1)+q(2)+q(3)))=-2/(3*pi^4)*((q(1)+q(2)+q(3))^2-
pi^2/4)*(q(1)+q(2)+q(3))*((q(1)+q(2)+q(3))-pi)+4/pi^4*((q(1)+q(2)+q(3))^2-
pi^2)*((q(1)+q(2)+q(3))^2-pi^2/4)-2/(3*pi^4)*((q(1)+q(2)+q(3))^2-
pi^2/4)*(q(1)+q(2)+q(3))*((q(1)+q(2)+q(3))+pi);
Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên
90
- Khai triển sin(q):
sin(q(1))=2/(pi^4)*(q(1)^2-pi^2)*q(1)*(q(1)-pi/2)-2/pi^4*(q(1)^2-
pi^2)*(q(1)+pi/2)*q(1);
sin((q(1)+q(2)))=2/(pi^4)*((q(1)+q(2))^2-pi^2)*(q(1)+q(2))*((q(1)+q(2))-pi/2)-
2/pi^4*((q(1)+q(2))^2-pi^2)*((q(1)+q(2))+pi/2)*(q(1)+q(2));
sin((q(1)+q(2)+q(3)))=2/(pi^4)*((q(1)+q(2)+q(3))^2-
pi^2)*(q(1)+q(2)+q(3))*((q(1)+q(2)+q(3))-pi/2)-2/pi^4*((q(1)+q(2)+q(3))^2-
pi^2)*((q(1)+q(2)+q(3))+pi/2)*(q(1)+q(2)+q(3));
Phiếm hàm mục tiêu:
Q = ((-2/(3*pi^4)*((q(1)+q(2)+q(3))^2-
pi^2/4)*(q(1)+q(2)+q(3))*((q(1)+q(2)+q(3))-pi)+4/pi^4*((q(1)+q(2)+q(3))^2-
pi^2)*((q(1)+q(2)+q(3))^2-pi^2/4)-2/(3*pi^4)*((q(1)+q(2)+q(3))^2-
pi^2/4)*(q(1)+q(2)+q(3))*((q(1)+q(2)+q(3))+pi))-0.8)^2+(((90*(-
2/(3*pi^4)*(q(1)^2-pi^2/4)*q(1)*(q(1)-pi)+4/pi^4*(q(1)^2-pi^2)*(q(1)^2-pi^2/4)-
2/(3*pi^4)*(q(1)^2-pi^2/4)*q(1)*(q(1)+pi))+(80*(-2/(3*pi^4)*((q(1)+q(2))^2-
pi^2/4)*(q(1)+q(2))*((q(1)+q(2))-pi)+4/pi^4*((q(1)+q(2))^2-pi^2)*((q(1)+q(2))^2-
-pi^2/4)-2/(3*pi^4)*((q(1)+q(2))^2-pi^2/4)*(q(1)+q(2))*((q(1)+q(2))+pi))+(70*(-
2/(3*pi^4)*((q(1)+q(2)+q(3))^2-pi^2/4)*(q(1)+q(2)+q(3))*((q(1)+q(2)+q(3))-
pi)+4/pi^4*((q(1)+q(2)+q(3))^2-pi^2)*((q(1)+q(2)+q(3))^2-pi^2/4)-
2/(3*pi^4)*((q(1)+q(2)+q(3))^2-
pi^2/4)*(q(1)+q(2)+q(3))*((q(1)+q(2)+q(3))+pi)))-
190)^2+(((90*(2/(pi^4)*(q(1)^2-pi^2)*q(1)*(q(1)-pi/2)-2/pi^4*(q(1)^2-
pi^2)*(q(1)+pi/2)*q(1))+(80*(2/(pi^4)*((q(1)+q(2))^2-
pi^2)*(q(1)+q(2))*((q(1)+q(2))-pi/2)-2/pi^4*((q(1)+q(2))^2-
pi^2)*((q(1)+q(2))+pi/2)*(q(1)+q(2)))+(70*(2/(pi^4)*((q(1)+q(2)+q(3))^2-
pi^2)*(q(1)+q(2)+q(3))*((q(1)+q(2)+q(3))-pi/2)-2/pi^4*((q(1)+q(2)+q(3))^2-
pi^2)*((q(1)+q(2)+q(3))+pi/2)*(q(1)+q(2)+q(3)))-115)^2 → min
Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên
91
KẾT LUẬN CHƢƠNG 3:
Trong chương này, Luận văn đưa ra hướng nghiên cứu chuyển bài toán động
học ngược robot về bài toán tối ưu và sử dụng một số phương pháp giải bài toán tối
ưu phi tuyến để giải bài toán động học ngược robot, đưa ra hướng nghiên cứu sử
dụng phương pháp khai triển thành đa thức để giải bài toán, cụ thể như sau:
Thành lập được bài toán điều khiển: Xây dựng được mô hình toán học, đưa ra
phiếm hàm mục tiêu và điều kiện hạn chế của các biến khớp của một số loại
Robot.
Giới thiệu và sử dụng một số phương pháp giải bài toán động học ngược Robot:
- Với phương pháp sử dụng Optimization Toolbox trong Matlab để giải bài toán:
+ Sử dụng hàm fmincon, Nghiệm của bài toán tiến tới điểm cực trị toàn cục, kết
quả của bài toán tìm được trong thời gian ngắn.
Để hàm mục tiêu tiến tới min, phương pháp trên đòi hỏi khoảng nghiệm reo
phải nằm g...