kangtadang35

New Member
Chuyên đề Phương trình và bất phương có chứa mũ và logarít

Download Chuyên đề Phương trình và bất phương có chứa mũ và logarít miễn phí





4. Phương pháp 4: Nhẩm nghiệm và sử dụng tính đơn điệu để chứng
minh nghiệm duy nhất (thường là sử dụng công cụ
đạo hàm)
* Ta thường sử dụng các tính chất sau:
· Tính chất 1: Nếu hàm số f tăng ( hay giảm ) trong khỏang (a;b) thì phương trình f(x) = C có không quá một nghiệm trong khỏang (a;b). ( do đó nếu tồn tại x0 (a;b) sao cho
f(x0) = C thì đó là nghiệm duy nhất của phương trình f(x) = C)
· Tính chất 2 : Nếu hàm f tăng trong khỏang (a;b) và hàm g là hàm một hàm giảm trong khỏang (a;b) thì phương trình f(x) = g(x) có nhiều nhất một nghiệm trong khỏang (a;b) . ( do đó nếu tồn tại x0 (a;b) sao cho f(x0) = g(x0) thì đó là nghiệm duy nhất của phương trình f(x) = g(x))
 



Để tải bản DOC Đầy Đủ thì Trả lời bài viết này, mình sẽ gửi Link download cho

Tóm tắt nội dung:

Chuyên đề 5:
PHƯƠNG TRÌNH VÀ BẤT PHƯƠNG CÓ CHỨA MŨ VÀ LOGARÍT
TÓM TẮT GIÁO KHOA
I. KIẾN THỨC CƠ BẢN VỀ HÀM SỐ MŨ
1. Các định nghĩa:
( )
2. Các tính chất :
3. Hàm số mũ: Dạng : ( a > 0 , a1 )
Tập xác định :
Tập giá trị : ( )
Tính đơn điệu:
* a > 1 : đồng biến trên
* 0 < a < 1 : nghịch biến trên
Đồ thị hàm số mũ :
0 y=ax
a>1
y=ax
Minh họa:
y=2x
y=
I. KIẾN THỨC CƠ BẢN VỀ HÀM SỐ LÔGARÍT
1. Định nghĩa: Với a > 0 , a 1 và N > 0
Điều kiện có nghĩa: có nghĩa khi
2. Các tính chất :
Đặc biệt :
3. Công thức đổi cơ số :
* Hệ quả:

* Công thức đặc biệt:
4. Hàm số logarít: Dạng ( a > 0 , a 1 )
Tập xác định :
Tập giá trị
Tính đơn điệu:
* a > 1 : đồng biến trên
* 0 < a < 1 : nghịch biến trên
0 y=logax
Đồ thị của hàm số lôgarít:
a>1
y=logax
Minh họa:
y=log2x
5. CÁC ĐỊNH LÝ CƠ BẢN:
1. Định lý 1: Với 0 < a 1 thì : aM = aN M = N
2. Định lý 2: Với 0 N (nghịch biến)
3. Định lý 3: Với a > 1 thì : aM < aN M < N (đồng biến )
4. Định lý 4: Với 0 0;N > 0 thì : loga M = loga N M = N
5. Định lý 5: Với 0 N (nghịch biến)
6. Định lý 6: Với a > 1 thì : loga M < loga N M < N (đồng biến)
III. CÁC PHƯƠNG PHÁP GIẢI PHƯƠNG TRÌNH MŨ THƯỜNG SỬ DỤNG:
1. Phương pháp 1: Biến đổi phương trình về dạng cơ bản : aM = aN
Ví dụ : Giải các phương trình sau :
2. Phương pháp 2: Đặt ẩn phụ chuyển về phương trình đại số
Ví dụ : Giải các phương trình sau :
1)
2)
3)
4)
5)
6)
3. Phương pháp 3: Biến đổi phương trình về dạng tích số A.B = 0 ...
Ví dụ : Giải phương trình sau :
1) 8.3x + 3.2x = 24 + 6x
2)
3) (
4. Phương pháp 4: Nhẩm nghiệm và sử dụng tính đơn điệu để chứng
minh nghiệm duy nhất (thường là sử dụng công cụ
đạo hàm)
* Ta thường sử dụng các tính chất sau:
Tính chất 1: Nếu hàm số f tăng ( hay giảm ) trong khỏang (a;b) thì phương trình f(x) = C có không quá một nghiệm trong khỏang (a;b). ( do đó nếu tồn tại x0 (a;b) sao cho
f(x0) = C thì đó là nghiệm duy nhất của phương trình f(x) = C)
Tính chất 2 : Nếu hàm f tăng trong khỏang (a;b) và hàm g là hàm một hàm giảm trong khỏang (a;b) thì phương trình f(x) = g(x) có nhiều nhất một nghiệm trong khỏang (a;b) . ( do đó nếu tồn tại x0 (a;b) sao cho f(x0) = g(x0) thì đó là nghiệm duy nhất của phương trình f(x) = g(x))
Ví dụ : Giải các phương trình sau :
1) 3x + 4x = 5x 2) 2x = 1+ 3)
IV. CÁC PHƯƠNG PHÁP GIẢI PHƯƠNG TRÌNH LOGARIT THƯỜNG SỬ DỤNG:
1. Phương pháp 1: Biến đổi phương trình về dạng cơ bản :
Ví dụ : Giải các phương trình sau :
1) 2) 3) )
2. Phương pháp 2: Đặt ẩn phụ chuyển về phương trình đại số.
Ví dụ : Giải các phương trình sau :
1) 2)
3. Phương pháp 3: Biến đổi phương trình về dạng tích số A.B = 0 ...
Ví dụ : Giải phương trình sau :
4. Phương pháp 4: Nhẩm nghiệm và sử dụng tính đơn điệu để chứng minh
nghiệm duy nhất.
(thường là sử dụng công cụ đạo hàm)
* Ta thường sử dụng các tính chất sau:
Tính chất 1: Nếu hàm số f tăng ( hay giảm ) trong khỏang (a;b) thì phương trình f(x) = C có không quá một nghiệm trong khỏang (a;b). ( do đó nếu tồn tại x0 (a;b) sao cho
f(x0) = C thì đó là nghiệm duy nhất của phương trình f(x) = C)
Tính chất 2 : Nếu hàm f tăng trong khỏang (a;b) và hàm g là hàm một hàm giảm trong khỏang (a;b) thì phương trình f(x) = g(x) có nhiều nhất một nghiệm trong khỏang (a;b) . ( do đó nếu tồn tại x0 (a;b) sao cho f(x0) = g(x0) thì đó là nghiệm duy nhất của phương trình f(x) = g(x))
Ví dụ : Giải các phương trình sau :
V. CÁC PHƯƠNG PHÁP GIẢI BẤT PHƯƠNG TRÌNH MŨ THƯỜNG SỬ DỤNG:
1. Phương pháp 1: Biến đổi phương trình về dạng cơ bản : aM < aN ()
Ví dụ : Giải các bất phương trình sau :
1)
2)
2. Phương pháp 2: Đặt ẩn phụ chuyển về bất phương trình đại số.
Ví dụ : Giải các phương trình sau :
1) 4)
2) 5)
3) 6)
VI. CÁC PHƯƠNG PHÁP GIẢI BẤT PHƯƠNG TRÌNH LOGARIT THƯỜNG SỬ
DỤNG:
1. Phương pháp 1: Biến đổi phương trình về dạng cơ bản :
()
Ví dụ : Giải các bất phương trình sau :
1) 2)
3) 4)
5)
2. Phương pháp 2: Đặt ẩn phụ chuyển về bất phương trình đại số.
Ví dụ : Giải các phương trình sau :
1)
2)
...
 

Kiến thức bôn ba

Các chủ đề có liên quan khác
Tạo bởi Tiêu đề Blog Lượt trả lời Ngày
D Nâng cao năng lực tự học và kỹ năng giải toán cho học sinh lớp 10 trung học phổ thông qua dạy học giải phương trình Luận văn Sư phạm 0
D Hình thành và rèn luyện kĩ năng thảo luận nhóm cho học sinh trong dạy học giải phương trình lượng giác ở lớp 11 trường Trung học phổ thông Luận văn Sư phạm 0
D Cấu trúc nghiệm của một số lớp phương trình vi phân khoảng và ứng dụng Khoa học Tự nhiên 0
D Bài tập Phương trình vi phân và cách giải Môn đại cương 0
D Phép biến đổi Laplace và ứng dụng trong phương trình vi phân Luận văn Sư phạm 0
D Phép biến đổi Laplace và ứng dụng trong việc giải phương trình vi phân thường Luận văn Sư phạm 0
D Giáo trình bài giảng: Xử lý và truyền thông đa phương tiện Công nghệ thông tin 0
N Quy trình đón tiếp và làm thủ tục nhận phòng cho khách đoàn nội địa tại khách sạn Phương Đông Luận văn Kinh tế 3
G Phương hướng và giải pháp nhằm hoàn thiện và nâng cao quy trình đón tiếp, làm thủ tục nhập phòng cho khách lẽ nội địa đã đặt trước tại khách sạn Hoàng Mai Luận văn Kinh tế 0
A Trình bày và phân tích một vụ đơn phương chấm dứt hợp đồng lao động dài hạn của 1 giám đốc doanh nghiệp đối với 1 người lao động Luận văn Kinh tế 0

Các chủ đề có liên quan khác

Top