Download 19 phương pháp chứng minh bất đẳng thức
Để chứng minh bất đẳng thức đúng với n > n0 ta thực hiện các bước sau :
1 – Kiểm tra bất đẳng thức đúng với n > n0
2 - Giả sử BĐT đúng với n =k (thay n =k vào BĐT cần chứng minh được gọi là giả thiết quy nạp )
3- Ta chứng minh bất đẳng thức đúng với n = k +1 (thay n = k+1vào BĐT cần chứng minh rồi biến đổi để dùng giả thiết quy nạp)
4 – kết luận BĐT đúng với mọi n > n0.
++ Ai muốn tải bản DOC Đầy Đủ thì Trả lời bài viết này, mình sẽ gửi Link download cho!
+ A > B A > B với n lẻ
+ > A > B với n chẵn
+ m > n > 0 và A > 1 A >A
+ m > n > 0 và 0 +A 0
3/Một số hằng bất đẳng thức
+ A 0 với A ( dấu = xảy ra khi A = 0 )
+ An 0 vớiA ( dấu = xảy ra khi A = 0 )
+ với (dấu = xảy ra khi A = 0 )
+ - < A =
+ ( dấu = xảy ra khi A.B > 0)
+ ( dấu = xảy ra khi A.B < 0)
PHẦN II CÁC PHƯƠNG PHÁP CHỨNG MINH BẤT ĐẲNG THỨC
Phương pháp 1 : Dùng định nghĩa
Kiến thức : Để chứng minh A > B. Ta lập hiệu A –B > 0
Lưu ý dùng hằng bất đẳng thức M 0 với" M
Ví dụ 1 " x, y, z chứng minh rằng :
a) x + y + z xy+ yz + zx
b) x + y + z 2xy – 2xz + 2yz
c) x + y + z+3 2 (x + y + z)
Giải:a) Ta xét hiệu : x + y + z- xy – yz – zx =.2 .( x + y + z- xy – yz – zx)
=đúng với mọi x;y;z
Vì (x-y)2 0 với"x ; y Dấu bằng xảy ra khi x=y
(x-z)2 0 với"x ; z Dấu bằng xảy ra khi x=z
(y-z)2 0 với" z; y Dấu bằng xảy ra khi z=y
Vậy x + y + z xy+ yz + zx. Dấu bằng xảy ra khi x = y =z
b)Ta xét hiệu: x + y + z- ( 2xy – 2xz +2yz ) = x + y + z- 2xy +2xz –2yz
= ( x – y + z) đúng với mọi x;y;z
Vậy x + y + z 2xy – 2xz + 2yz đúng với mọi x;y;z
Dấu bằng xảy ra khi x+y=z
c) Ta xét hiệu: x + y + z+3 – 2( x+ y +z ) = x- 2x + 1 + y -2y +1 + z-2z +1
= (x-1)+ (y-1) +(z-1) 0. Dấu(=)xảy ra khi x=y=z=1
Ví dụ 2: chứng minh rằng :
a) ; b) c) Hãy tổng quát bài toán
Giải: a) Ta xét hiệu
= = =
Vậy . Dấu bằng xảy ra khi a=b
b)Ta xét hiệu
=.Vậy
Dấu bằng xảy ra khi a = b =c
c)Tổng quát
Tóm lại các bước để chứng minh AB theo định nghĩa
Bước 1: Ta xét hiệu H = A - B
Bước 2:Biến đổi H=(C+D)hay H=(C+D)+….+(E+F)
Bước 3:Kết luận A ³ B
Ví dụ 1: Chứng minh "m,n,p,q ta đều có : m+ n+ p+ q+1³ m(n+p+q+1)
Giải:
(luôn đúng)
Dấu bằng xảy ra khi
Ví dụ 2: Chứng minh rằng với mọi a, b, c ta luôn có :
Giải: Ta có : ,
Đúng với mọi a, b, c.
Phương pháp 2 : Dùng phép biến đổi tương đương
Kiến thức:
Ta biến đổi bất đẳng thức cần chứng minh tương đương với bất đẳng thức đúng hay bất đẳng thức đã được chứng minh là đúng.
Nếu A < B C < D , với C < D là một bất đẳng thức hiển nhiên, hay đã biết là đúng thì có bất đẳng thức A < B .
Chú ý các hằng đẳng thức sau:
Ví dụ 1: Cho a, b, c, d,e là các số thực chứng minh rằng
a)
b)
c)
Giải: a)
(BĐT này luôn đúng). Vậy (dấu bằng xảy ra khi 2a=b)
b)
Bất đẳng thức cuối đúng.
Vậy . Dấu bằng xảy ra khi a=b=1
c)
Bất đẳng thức đúng vậy ta có điều phải chứng minh
Ví dụ 2: Chứng minh rằng:
Giải:
a2b2(a2-b2)(a6-b6) 0
a2b2(a2-b2)2(a4+ a2b2+b4) 0
Bất đẳng thứccuối đúng vậy ta có điều phải chứng minh
Ví dụ 3: cho x.y =1 và xy Chứng minh
Giải: vì :xy nên x- y 0 x2+y2 ( x-y)
x2+y2- x+y 0 x2+y2+2- x+y -2 0
x2+y2+()2- x+y -2xy 0 vì x.y=1 nên 2.x.y=2
(x-y-)2 0 Điều này luôn luôn đúng . Vậy ta có điều phải chứng minh
Ví dụ 4: Chứng minh rằng:
a/ P(x,y)=
b/ (gợi ý :bình phương 2 vế)
c/ Cho ba số thực khác không x, y, z thỏa mãn:
Chứng minh rằng :có đúng một trong ba số x,y,z lớn hơn 1
Giải: Xét (x-1)(y-1)(z-1)=xyz+(xy+yz+zx)+x+y+z-1
=(xyz-1)+(x+y+z)-xyz()=x+y+z - ( (vì< x+y+z theo gt)
2 trong 3 số x-1 , y-1 , z-1 âm hay cả ba sỗ-1 , y-1, z-1 là dương.
Nếu trường hợp sau xảy ra thì x, y, z >1 x.y.z>1 Mâu thuẫn gt x.y.z=1 bắt buộc phải xảy ra trường hợp trên tức là có đúng 1 trong ba số x ,y ,z là số lớn hơn 1
Ví dụ 5: Chứng minh rằng :
Giải:Ta có :
Tương tự ta có :,
Cộng vế theo vế các bất đẳng thức (1), (2), (3), ta được :
(*)
Ta có :
Tương tự : ,
Cộng vế theo vế các bất đẳng thức (4), (5), (6), ta được :
(**)
Từ (*) và (**) , ta được : (đpcm)
Phương pháp 3: Dùng bất đẳng thức phụ
Kiến thức:
a)
b) dấu( = ) khi x = y = 0
c)
d)
Ví dụ 1 Cho a, b ,c là các số không âm chứng minh rằng
(a+b)(b+c)(c+a)8abc
Giải: Dùng bất đẳng thức phụ:
Tacó ; ;
(a+b)(b+c)(c+a)8abc
Dấu “=” xảy ra khi a = b = c
Phương pháp 4: Bất đẳng thức Cauchy
Kiến thức:
a/ Với hai số không âm : , ta có: . Dấu “=” xảy ra khi a=b
b/ Bất đẳng thức mở rộng cho n số không âm :
Dấu “=” xảy ra khi
Chú ý : ta dùng bất đẳng thức Côsi khi đề cho biến số không âm.
Ví dụ 1 : Giải phương trình :
Giải : Nếu đặt t =2x thì pt trở thành pt bậc 6 theo t nên ta đặt
Khi đó phương trình có dạng :
Vế trái của phương trình:
Vậy phương trình tương đương với :
.
Ví dụ 2 : Cho x, y , z > 0 và x + y + z = 1. Tìm GTLN của P =
Giải : P = 3- () = 3 – Q. Theo BDT Côsi , nếu a, b, c > 0 thì
Suy ra Q = -Q nên P = 3 – Q 3-=
Vậy max P = .khi x = y = z = .
Ví dụ 3: Cho a, b, c >0 . Chứng minh rằng:
Giải: Áp dụng bất đẳng thức Côsi ta có :
Tương tự :
Dấu “=” xảy ra khi a = b = c.
Ví dụ 4 : CMR trong tam giác ABC : (*)
Giải : Theo bất đẳng thức Côsi :
Cũng theo bất đẳng thức Côsi :
Viết tiếp hai BDT tương tự (2) rồi nhân với nhau sẽ được
Từ (1),(3) suy ra (*). Dấu “=” xảy ra khi a = b = c hay ABC là đều .
Ví dụ 5:
Cho . Chứng minh rằng:
Giải: Đặt có 2 nghiệm a,c
Mà:
Theo bất đẳng thức Cauchy ta có:
Phương pháp 5 Bất đẳng thức Bunhiacopski
Kiến thức:
Cho 2n số thực (): . Ta luôn có:
Dấu “=” xảy ra khi
Hay (Quy ước : nếu mẫu = 0 thì tử = 0 )
Chứng minh:
Đặt
Nếu a = 0 hay b = 0: Bất đẳng thức luôn đúng.
Nếu a,b > 0:
Đặt: , Thế thì:
Mặt khác:
Suy ra:
Lại có:
Suy ra:
Dấu”=” xảy ra
Ví dụ 1 :
Chứng minh rằng: , ta có:
Giải: Ta có:
Theo bất đẳng thức Bunhiacopski, ta có:
Sử dụng bất đẳng thức Bunhiacopski một lần nữa:
Ví dụ 2: Cho tam giác ABC có các góc A,B,C nhọn. Tìm GTLN của:
Giải:
* Bất đẳng thức Bunhiacopski mở rộng
Cho m bộ số, mỗi bộ số gồm n số không âm:
Thế thì:
Dấu”=” xảy ra bô số (a,b,….,c) sao cho: với mỗi i = 1,2,…,m thì sao cho: , Hay
Ví dụ 1: Cho
Chứng minh rằng:
Giải:
ta có:
Do đó theo bất đẳng thức Bunhiacopski:
(đpcm)
Ví dụ 2: Cho 4 số a,b,c,d bất kỳ chứng minh rằng:
Giải: Dùng bất đẳng thức Bunhiacopski: Tacó ac+bd
mà
Ví dụ 3: Chứng minh rằng :
Giải: Dùng bất đẳng thức Bunhiacopski
Cách 1: Xét cặp số (1,1,1) và (a,b,c) ta có
3
Điều phải chứng minh Dấu bằng xảy ra khi a=b=c
Phương pháp 6: Bất đẳng thức Trê- bư-sép
Kiến thức:
a)Nếu thì .
Dấu ‘=’ xảy ra khi và chỉ khi
b)Nếu thì
Dấu ‘=’ xảy ra khi và chỉ khi
Ví dụ 1: Cho ABC có 3 góc nhọn nội tiếp đường tròn bán kính R = 1 và
S là diện tích tan giác. chứng minh rằng ABC là tam giác đều.
Giải: Không giảm tính tổng quát ta giả sư Suy ra:
Áp dụng BĐT trebusep ta được:
Dấu ‘=’ xảy ra
Mặt khác:
Thay (2) vào (1) ta có
Dấu ‘=’ xảy ra ABC đều.
Ví dụ 2(HS tự giải):
a/ Cho a,b,c>0 và a+b+c=1 CMR:
b/ Cho x,y,z>0 và x+y+z=1 CMR:x+2y+z
c/ Cho a>0 , b>0, c>0 CMR:
d)Cho x,y thỏa mãn ;CMR: x+y
Ví dụ 3: Cho a>b>c>0 và . Chứng minh rằng
Giải: Do a,b,c đối xứng ,giả sử abc
Áp dụng BĐT Trê- bư-sép ta có
==
Vậy Dấu bằng xảy ra khi a=b=c=
Ví dụ 4: Cho a,b,c,d>0 và abcd =1 .Chứng minh rằng :
Giải: Ta có
Do abcd =1 nên cd = (dùng )
Ta có (1)
Mặt khác: = (ab+cd)+(ac+bd)+(bc+ad)
=
Vậy
Phương pháp7 Bất đẳng thức Bernouli
Kiến thức:
a)Dạng nguyên thủy: Cho a-1, Z thì . Dấu ‘=’ xảy ra khi và chỉ khi
b) Dạng mở rộng:
- Cho a > -1, thì . Dấu bằng xảy ra khi và chỉ khi a = 0.
- cho thì . Dấu bằng xảy ra khi va chỉ khi.
Ví dụ 1 : Chứng minh rằng .
Giải
Nếu hay thì BĐT luôn...
Download 19 phương pháp chứng minh bất đẳng thức miễn phí
Để chứng minh bất đẳng thức đúng với n > n0 ta thực hiện các bước sau :
1 – Kiểm tra bất đẳng thức đúng với n > n0
2 - Giả sử BĐT đúng với n =k (thay n =k vào BĐT cần chứng minh được gọi là giả thiết quy nạp )
3- Ta chứng minh bất đẳng thức đúng với n = k +1 (thay n = k+1vào BĐT cần chứng minh rồi biến đổi để dùng giả thiết quy nạp)
4 – kết luận BĐT đúng với mọi n > n0.
++ Ai muốn tải bản DOC Đầy Đủ thì Trả lời bài viết này, mình sẽ gửi Link download cho!
Tóm tắt nội dung:
A > B > 0 A > B+ A > B A > B với n lẻ
+ > A > B với n chẵn
+ m > n > 0 và A > 1 A >A
+ m > n > 0 và 0 +A 0
3/Một số hằng bất đẳng thức
+ A 0 với A ( dấu = xảy ra khi A = 0 )
+ An 0 vớiA ( dấu = xảy ra khi A = 0 )
+ với (dấu = xảy ra khi A = 0 )
+ - < A =
+ ( dấu = xảy ra khi A.B > 0)
+ ( dấu = xảy ra khi A.B < 0)
PHẦN II CÁC PHƯƠNG PHÁP CHỨNG MINH BẤT ĐẲNG THỨC
Phương pháp 1 : Dùng định nghĩa
Kiến thức : Để chứng minh A > B. Ta lập hiệu A –B > 0
Lưu ý dùng hằng bất đẳng thức M 0 với" M
Ví dụ 1 " x, y, z chứng minh rằng :
a) x + y + z xy+ yz + zx
b) x + y + z 2xy – 2xz + 2yz
c) x + y + z+3 2 (x + y + z)
Giải:a) Ta xét hiệu : x + y + z- xy – yz – zx =.2 .( x + y + z- xy – yz – zx)
=đúng với mọi x;y;z
Vì (x-y)2 0 với"x ; y Dấu bằng xảy ra khi x=y
(x-z)2 0 với"x ; z Dấu bằng xảy ra khi x=z
(y-z)2 0 với" z; y Dấu bằng xảy ra khi z=y
Vậy x + y + z xy+ yz + zx. Dấu bằng xảy ra khi x = y =z
b)Ta xét hiệu: x + y + z- ( 2xy – 2xz +2yz ) = x + y + z- 2xy +2xz –2yz
= ( x – y + z) đúng với mọi x;y;z
Vậy x + y + z 2xy – 2xz + 2yz đúng với mọi x;y;z
Dấu bằng xảy ra khi x+y=z
c) Ta xét hiệu: x + y + z+3 – 2( x+ y +z ) = x- 2x + 1 + y -2y +1 + z-2z +1
= (x-1)+ (y-1) +(z-1) 0. Dấu(=)xảy ra khi x=y=z=1
Ví dụ 2: chứng minh rằng :
a) ; b) c) Hãy tổng quát bài toán
Giải: a) Ta xét hiệu
= = =
Vậy . Dấu bằng xảy ra khi a=b
b)Ta xét hiệu
=.Vậy
Dấu bằng xảy ra khi a = b =c
c)Tổng quát
Tóm lại các bước để chứng minh AB theo định nghĩa
Bước 1: Ta xét hiệu H = A - B
Bước 2:Biến đổi H=(C+D)hay H=(C+D)+….+(E+F)
Bước 3:Kết luận A ³ B
Ví dụ 1: Chứng minh "m,n,p,q ta đều có : m+ n+ p+ q+1³ m(n+p+q+1)
Giải:
(luôn đúng)
Dấu bằng xảy ra khi
Ví dụ 2: Chứng minh rằng với mọi a, b, c ta luôn có :
Giải: Ta có : ,
Đúng với mọi a, b, c.
Phương pháp 2 : Dùng phép biến đổi tương đương
Kiến thức:
Ta biến đổi bất đẳng thức cần chứng minh tương đương với bất đẳng thức đúng hay bất đẳng thức đã được chứng minh là đúng.
Nếu A < B C < D , với C < D là một bất đẳng thức hiển nhiên, hay đã biết là đúng thì có bất đẳng thức A < B .
Chú ý các hằng đẳng thức sau:
Ví dụ 1: Cho a, b, c, d,e là các số thực chứng minh rằng
a)
b)
c)
Giải: a)
(BĐT này luôn đúng). Vậy (dấu bằng xảy ra khi 2a=b)
b)
Bất đẳng thức cuối đúng.
Vậy . Dấu bằng xảy ra khi a=b=1
c)
Bất đẳng thức đúng vậy ta có điều phải chứng minh
Ví dụ 2: Chứng minh rằng:
Giải:
a2b2(a2-b2)(a6-b6) 0
a2b2(a2-b2)2(a4+ a2b2+b4) 0
Bất đẳng thứccuối đúng vậy ta có điều phải chứng minh
Ví dụ 3: cho x.y =1 và xy Chứng minh
Giải: vì :xy nên x- y 0 x2+y2 ( x-y)
x2+y2- x+y 0 x2+y2+2- x+y -2 0
x2+y2+()2- x+y -2xy 0 vì x.y=1 nên 2.x.y=2
(x-y-)2 0 Điều này luôn luôn đúng . Vậy ta có điều phải chứng minh
Ví dụ 4: Chứng minh rằng:
a/ P(x,y)=
b/ (gợi ý :bình phương 2 vế)
c/ Cho ba số thực khác không x, y, z thỏa mãn:
Chứng minh rằng :có đúng một trong ba số x,y,z lớn hơn 1
Giải: Xét (x-1)(y-1)(z-1)=xyz+(xy+yz+zx)+x+y+z-1
=(xyz-1)+(x+y+z)-xyz()=x+y+z - ( (vì< x+y+z theo gt)
2 trong 3 số x-1 , y-1 , z-1 âm hay cả ba sỗ-1 , y-1, z-1 là dương.
Nếu trường hợp sau xảy ra thì x, y, z >1 x.y.z>1 Mâu thuẫn gt x.y.z=1 bắt buộc phải xảy ra trường hợp trên tức là có đúng 1 trong ba số x ,y ,z là số lớn hơn 1
Ví dụ 5: Chứng minh rằng :
Giải:Ta có :
Tương tự ta có :,
Cộng vế theo vế các bất đẳng thức (1), (2), (3), ta được :
(*)
Ta có :
Tương tự : ,
Cộng vế theo vế các bất đẳng thức (4), (5), (6), ta được :
(**)
Từ (*) và (**) , ta được : (đpcm)
Phương pháp 3: Dùng bất đẳng thức phụ
Kiến thức:
a)
b) dấu( = ) khi x = y = 0
c)
d)
Ví dụ 1 Cho a, b ,c là các số không âm chứng minh rằng
(a+b)(b+c)(c+a)8abc
Giải: Dùng bất đẳng thức phụ:
Tacó ; ;
(a+b)(b+c)(c+a)8abc
Dấu “=” xảy ra khi a = b = c
Phương pháp 4: Bất đẳng thức Cauchy
Kiến thức:
a/ Với hai số không âm : , ta có: . Dấu “=” xảy ra khi a=b
b/ Bất đẳng thức mở rộng cho n số không âm :
Dấu “=” xảy ra khi
Chú ý : ta dùng bất đẳng thức Côsi khi đề cho biến số không âm.
Ví dụ 1 : Giải phương trình :
Giải : Nếu đặt t =2x thì pt trở thành pt bậc 6 theo t nên ta đặt
Khi đó phương trình có dạng :
Vế trái của phương trình:
Vậy phương trình tương đương với :
.
Ví dụ 2 : Cho x, y , z > 0 và x + y + z = 1. Tìm GTLN của P =
Giải : P = 3- () = 3 – Q. Theo BDT Côsi , nếu a, b, c > 0 thì
Suy ra Q = -Q nên P = 3 – Q 3-=
Vậy max P = .khi x = y = z = .
Ví dụ 3: Cho a, b, c >0 . Chứng minh rằng:
Giải: Áp dụng bất đẳng thức Côsi ta có :
Tương tự :
Dấu “=” xảy ra khi a = b = c.
Ví dụ 4 : CMR trong tam giác ABC : (*)
Giải : Theo bất đẳng thức Côsi :
Cũng theo bất đẳng thức Côsi :
Viết tiếp hai BDT tương tự (2) rồi nhân với nhau sẽ được
Từ (1),(3) suy ra (*). Dấu “=” xảy ra khi a = b = c hay ABC là đều .
Ví dụ 5:
Cho . Chứng minh rằng:
Giải: Đặt có 2 nghiệm a,c
Mà:
Theo bất đẳng thức Cauchy ta có:
Phương pháp 5 Bất đẳng thức Bunhiacopski
Kiến thức:
Cho 2n số thực (): . Ta luôn có:
Dấu “=” xảy ra khi
Hay (Quy ước : nếu mẫu = 0 thì tử = 0 )
Chứng minh:
Đặt
Nếu a = 0 hay b = 0: Bất đẳng thức luôn đúng.
Nếu a,b > 0:
Đặt: , Thế thì:
Mặt khác:
Suy ra:
Lại có:
Suy ra:
Dấu”=” xảy ra
Ví dụ 1 :
Chứng minh rằng: , ta có:
Giải: Ta có:
Theo bất đẳng thức Bunhiacopski, ta có:
Sử dụng bất đẳng thức Bunhiacopski một lần nữa:
Ví dụ 2: Cho tam giác ABC có các góc A,B,C nhọn. Tìm GTLN của:
Giải:
* Bất đẳng thức Bunhiacopski mở rộng
Cho m bộ số, mỗi bộ số gồm n số không âm:
Thế thì:
Dấu”=” xảy ra bô số (a,b,….,c) sao cho: với mỗi i = 1,2,…,m thì sao cho: , Hay
Ví dụ 1: Cho
Chứng minh rằng:
Giải:
ta có:
Do đó theo bất đẳng thức Bunhiacopski:
(đpcm)
Ví dụ 2: Cho 4 số a,b,c,d bất kỳ chứng minh rằng:
Giải: Dùng bất đẳng thức Bunhiacopski: Tacó ac+bd
mà
Ví dụ 3: Chứng minh rằng :
Giải: Dùng bất đẳng thức Bunhiacopski
Cách 1: Xét cặp số (1,1,1) và (a,b,c) ta có
3
Điều phải chứng minh Dấu bằng xảy ra khi a=b=c
Phương pháp 6: Bất đẳng thức Trê- bư-sép
Kiến thức:
a)Nếu thì .
Dấu ‘=’ xảy ra khi và chỉ khi
b)Nếu thì
Dấu ‘=’ xảy ra khi và chỉ khi
Ví dụ 1: Cho ABC có 3 góc nhọn nội tiếp đường tròn bán kính R = 1 và
S là diện tích tan giác. chứng minh rằng ABC là tam giác đều.
Giải: Không giảm tính tổng quát ta giả sư Suy ra:
Áp dụng BĐT trebusep ta được:
Dấu ‘=’ xảy ra
Mặt khác:
Thay (2) vào (1) ta có
Dấu ‘=’ xảy ra ABC đều.
Ví dụ 2(HS tự giải):
a/ Cho a,b,c>0 và a+b+c=1 CMR:
b/ Cho x,y,z>0 và x+y+z=1 CMR:x+2y+z
c/ Cho a>0 , b>0, c>0 CMR:
d)Cho x,y thỏa mãn ;CMR: x+y
Ví dụ 3: Cho a>b>c>0 và . Chứng minh rằng
Giải: Do a,b,c đối xứng ,giả sử abc
Áp dụng BĐT Trê- bư-sép ta có
==
Vậy Dấu bằng xảy ra khi a=b=c=
Ví dụ 4: Cho a,b,c,d>0 và abcd =1 .Chứng minh rằng :
Giải: Ta có
Do abcd =1 nên cd = (dùng )
Ta có (1)
Mặt khác: = (ab+cd)+(ac+bd)+(bc+ad)
=
Vậy
Phương pháp7 Bất đẳng thức Bernouli
Kiến thức:
a)Dạng nguyên thủy: Cho a-1, Z thì . Dấu ‘=’ xảy ra khi và chỉ khi
b) Dạng mở rộng:
- Cho a > -1, thì . Dấu bằng xảy ra khi và chỉ khi a = 0.
- cho thì . Dấu bằng xảy ra khi va chỉ khi.
Ví dụ 1 : Chứng minh rằng .
Giải
Nếu hay thì BĐT luôn...