Luận văn:Bài toán nội suy và mạng Nơron RBF : Luận án TS. Công nghệ thông tin: 62 48 01 01
Giới thiệu những điểm cơ bản của bài toán nội suy hàm số và mạng nơron nhiều tầng bao gồm: nội suy đa thức cho hàm một biến, các khái niệm tiếp cận chính đối với bài toán nội suy hàm nhiều biến, giới thiệu tóm tắt về mạng nơron nhân tạo và các mạng nơron nhiều tầng truyền tới. Trình bày các khái niệm cơ bản về mạng nơron RBF và mạng nội suy với hàm cơ sở bán kính dạng Gauss, mô tả các thuật toán thông dụng để huấn luyện mạng. Trình bày thuật toán hai pha mới (gọi là thuật toán lặp hai pha mới phát triển) để huấn luyện mạng nội suy RBF bao gồm cả phân tích toán học và kết quả thực nghiệm. Giới thiệu thuật toán một pha mới áp dụng cho bài toán nội suy với mốc cách đều. Đồng thời trình bày mạng địa phương RBF áp dụng cho bài toán động, hay bài toán thời gian thực. Đưa ra một số kết luận và đề xuất các nghiên cứu tiếp theo
Electronic Resources
MỞ ĐẦU
Nội suy hàm số là một bài toán cổ điển nhưng quan trọng trong giải tích số,
nhận dạng mẫu và có nhiều ứng dụng rộng rãi. Bài toán nội suy được mô tả như
sau: một hàm chưa xác định cụ thể
Trường hợp một chiều, bài toán đã được Lagrange (thế kỷ 18) nghiên cứu
giải quyết khá đầy đủ nhờ dùng hàm nội suy đa thức. Cùng với sự phát triển các
ứng dụng nhờ sử dụng máy tính trong nửa sau thế kỷ 20, sự phát triển của lý thuyết
nội suy Spline và sóng nhỏ (wavelet)… đã tạo nên cơ sở lý thuyết và thực tiễn khá
hoàn thiện cho nội suy hàm một biến.
Tuy nhiên, đa số các bài toán nội suy trong các ứng dụng thực tiễn lại là bài
toán nội suy nhiều biến. Do các khó khăn trong xử lý toán học và nhu cầu ứng dụng
trước đây chưa nhiều nên bài toán nội suy nhiều biến mới được quan tâm nhiều
trong 50 năm gần đây. Thoạt tiên, người ta phát triển nội suy nhiều biến theo hướng
sử dụng đa thức. Các sơ đồ chính được Franke(1982) và Boor(1987) đúc kết (có thể
xem [9]). Các sơ đồ này có độ phức tạp cao và kết quả ứng dụng không tốt.
Phương pháp k- láng giềng gần nhất được Cover và Hart (1967) đề xuất
khá sớm về mặt lý thuyết, nhưng chỉ đến khi Duda và Hart (1973) đưa ra tổng quan
đầy đủ thì phương pháp này mới được ứng dụng rộng rãi và được phát triển thêm
theo hướng hồi qui trọng số địa phương. Cách tiếp cận này cho ra một phương pháp
đơn giản dễ sử dụng. Tuy nhiên, nhược điểm cơ bản của nó là chỉ xác định thu hẹp
địa phương của hàm nội suy khi biết điểm cần tính giá trị hàm, nên không dùng
được cho bài toán cần xác định trước hàm nội suy để nội suy hàm số tại điểm tùy ý.
Trong 30 năm gần đây. Mạng nơron nhân tạo là cách tiếp cận tốt để khắc
phục những nhược điểm trên. Mô hình đầu tiên về mạng nơron nhân tạo được
McCelland và Pit (1943) đề xuất để nhận dạng mẫu. Rosenblatt (1953) và Widrow
Do Drive thay đổi chính sách, nên một số link cũ yêu cầu duyệt download. các bạn chỉ cần làm theo hướng dẫn.
Password giải nén nếu cần: ket-noi.com | Bấm trực tiếp vào Link để tải:
Giới thiệu những điểm cơ bản của bài toán nội suy hàm số và mạng nơron nhiều tầng bao gồm: nội suy đa thức cho hàm một biến, các khái niệm tiếp cận chính đối với bài toán nội suy hàm nhiều biến, giới thiệu tóm tắt về mạng nơron nhân tạo và các mạng nơron nhiều tầng truyền tới. Trình bày các khái niệm cơ bản về mạng nơron RBF và mạng nội suy với hàm cơ sở bán kính dạng Gauss, mô tả các thuật toán thông dụng để huấn luyện mạng. Trình bày thuật toán hai pha mới (gọi là thuật toán lặp hai pha mới phát triển) để huấn luyện mạng nội suy RBF bao gồm cả phân tích toán học và kết quả thực nghiệm. Giới thiệu thuật toán một pha mới áp dụng cho bài toán nội suy với mốc cách đều. Đồng thời trình bày mạng địa phương RBF áp dụng cho bài toán động, hay bài toán thời gian thực. Đưa ra một số kết luận và đề xuất các nghiên cứu tiếp theo
Electronic Resources
MỞ ĐẦU
Nội suy hàm số là một bài toán cổ điển nhưng quan trọng trong giải tích số,
nhận dạng mẫu và có nhiều ứng dụng rộng rãi. Bài toán nội suy được mô tả như
sau: một hàm chưa xác định cụ thể
Trường hợp một chiều, bài toán đã được Lagrange (thế kỷ 18) nghiên cứu
giải quyết khá đầy đủ nhờ dùng hàm nội suy đa thức. Cùng với sự phát triển các
ứng dụng nhờ sử dụng máy tính trong nửa sau thế kỷ 20, sự phát triển của lý thuyết
nội suy Spline và sóng nhỏ (wavelet)… đã tạo nên cơ sở lý thuyết và thực tiễn khá
hoàn thiện cho nội suy hàm một biến.
Tuy nhiên, đa số các bài toán nội suy trong các ứng dụng thực tiễn lại là bài
toán nội suy nhiều biến. Do các khó khăn trong xử lý toán học và nhu cầu ứng dụng
trước đây chưa nhiều nên bài toán nội suy nhiều biến mới được quan tâm nhiều
trong 50 năm gần đây. Thoạt tiên, người ta phát triển nội suy nhiều biến theo hướng
sử dụng đa thức. Các sơ đồ chính được Franke(1982) và Boor(1987) đúc kết (có thể
xem [9]). Các sơ đồ này có độ phức tạp cao và kết quả ứng dụng không tốt.
Phương pháp k- láng giềng gần nhất được Cover và Hart (1967) đề xuất
khá sớm về mặt lý thuyết, nhưng chỉ đến khi Duda và Hart (1973) đưa ra tổng quan
đầy đủ thì phương pháp này mới được ứng dụng rộng rãi và được phát triển thêm
theo hướng hồi qui trọng số địa phương. Cách tiếp cận này cho ra một phương pháp
đơn giản dễ sử dụng. Tuy nhiên, nhược điểm cơ bản của nó là chỉ xác định thu hẹp
địa phương của hàm nội suy khi biết điểm cần tính giá trị hàm, nên không dùng
được cho bài toán cần xác định trước hàm nội suy để nội suy hàm số tại điểm tùy ý.
Trong 30 năm gần đây. Mạng nơron nhân tạo là cách tiếp cận tốt để khắc
phục những nhược điểm trên. Mô hình đầu tiên về mạng nơron nhân tạo được
McCelland và Pit (1943) đề xuất để nhận dạng mẫu. Rosenblatt (1953) và Widrow
Do Drive thay đổi chính sách, nên một số link cũ yêu cầu duyệt download. các bạn chỉ cần làm theo hướng dẫn.
Password giải nén nếu cần: ket-noi.com | Bấm trực tiếp vào Link để tải:
You must be registered for see links