t.lengoctu
New Member
Download miễn phí Giáo trình môn Lý thuyết mạch
Bốn cực không tương hỗcần có bốn phần tử đểbiểu diễn, trong đó có ít nhất một phần tửkhông
tương hỗ. Có một loại phần tửkhông tương hỗ, tích cực đã được nhắc tới trong chương I, đó là
nguồn điều khiển. Đặc trưng của nguồn điều khiển là các thông sốcủa nó chịu sự điều khiển bởi
mạch ngoài Và bản thân nó cũng là một bốn cực không tương hỗ. Cụthểnó được chia thành:
http://cloud.liketly.com/flash/edoc/jh2i1fkjb33wa7b577g9lou48iyvfkz6-swf-2014-06-04-giao_trinh_mon_ly_thuyet_mach.MQwWjNaUQL.swf /tai-lieu/de-tai-ung-dung-tren-liketly-68946/
Để tải bản Đầy Đủ của tài liệu, xin Trả lời bài viết này, Mods sẽ gửi Link download cho bạn sớm nhất qua hòm tin nhắn.
Ai cần download tài liệu gì mà không tìm thấy ở đây, thì đăng yêu cầu down tại đây nhé:
Nhận download tài liệu miễn phí
Tóm tắt nội dung tài liệu:
Hình 3.21
0 T T+t1 t1
E0
-Trong khoảng t1-T: gốc thời gian dịch đến t1, nguồn tác động e(t)=0 tức đầu vào bị ngắn mạch,
uc(0) và iL(0) chính là các giá trị tính được trong giai đoạn trước đó tại thời điểm t1.
-Xét tương tự cho các khoảng kế tiếp. Cần lưu ý rằng, nếu kết thúc một chu kỳ mà mạch trở về
trạng thái ban đầu thì chu kỳ sau có đáp ứng lặp lại như chu kỳ trước đó.
3. Mạch dao động đơn song song là mạch đối ngẫu của mạch dao động đơn nối tiếp, do đó ta có
thể áp dụng tính chất đối ngẫu để suy ra kết quả của mạch dao động đơn song song từ mạch dao
động đơn nối tiếp hay ngược lại. Lý thuyết đối ngẫu có thể tìm thấy trong phần phụ lục.
TỔNG HỢP NỘI DUNG CHƯƠNG III
• Việc giải bài toán quá độ có thể bắt đầu bằng hệ phương trình vi phân mô tả trạng thái mạch
điện trong miền thời gian và việc giải nó thường là gặp khó khăn. Để giải dễ dàng, người ta
thường dùng phương pháp toán tử, tức là biến đổi hệ phương trình vi phân thành hệ phương
trình đại số. Một trong những công cụ thường dùng trong phương pháp toán tử là biến đổi
Laplace một phía. Về mặt toán học, biến đổi Laplace tổng quát hơn biến đổi Fourier, vì vậy
thích hợp để giải các lớp mạch quá độ.
• Các bài toán quá độ thường rất đa dạng. Nhưng luôn tuân thủ 4 bước cơ bản đã nêu trong bài
học, trong đó cần tuần tự lưu ý các điều kiện đầu của mạch, bao gồm cả việc quy định gốc
thời gian; Laplace hóa mạch và áp dụng các phương pháp phân tích mạch để tìm ra ảnh F(p)
của đáp ứng; cuối cùng là biến đổi Laplace ngược để lấy lại đáp ứng gốc f(t) trong miền thời
gian.
• Để giải quyết tốt bài toán quá độ, điều cốt lõi là phải nắm chắc biến đổi Laplace, đặc biệt là
biến đổi Laplace ngược. Phương pháp Heaviside là một phương pháp hữu hiệu để tính biến
đổi Laplace ngược, phương pháp này triệt để lợi dụng tính chất tuyến tính (xếp chồng) của
biến đổi Laplace để khai triển F(p) thành tổng của các thành phần ảnh ảnh đơn giản. Việc khai
triển này hoàn toàn dựa trên tính chất các điểm cực của F(p).
• Mạch dao động đơn có quá trình quá độ phức tạp. Dù tác động là một chiều thì trên mạch vẫn
có thể nảy sinh các dao động tự do sinh bởi sự áp đặt năng lượng ban đầu trên mạch. Thời
gian tồn tại dao động tự do tùy thuộc vào phẩm chất Q của mạch. Thông số điện trở (r) sẽ quy
định sự tổn hao năng lượng, phẩm chất (Q) và tính chất chọn lọc tần số (dải thông) của mạch.
• Mạch điện sẽ ổn định nếu các điểm cực nằm bên nửa trái mặt phẳng phức.
85
Chương 3: Hiện tượng quá độ trong các mạch RLC
CÂU HỎI VÀ BÀI TẬP CHƯƠNG III
3.1. Khi mọi điểm cực của hàm mạch F(p) nằm bên nửa trái mặt phẳng phức (không bao hàm trục
ảo), đáp ứng f(t) sẽ:
a. hội tụ về 0 khi t→∞.
b. hội tụ khi t→∞.
c. không hội tụ khi t→∞.
d. tiến đến vô hạn khi t→∞.
3.2. Khi mọi điểm cực của hàm mạch F(p) nằm bên nửa trái mặt phẳng phức, cùng lắm nằm trên
trục ảo, đáp ứng f(t) sẽ:
a. hội tụ về 0 khi t→∞.
b. hội tụ khi t→∞.
c. không hội tụ khi t→∞.
d. không tiến đến vô hạn khi t→∞.
3.3. Khi tồn tại điểm cực của hàm mạch F(p) nằm bên nửa phải mặt phẳng phức, đáp ứng f(t) sẽ:
a. hội tụ về 0 khi t→∞.
b. hội tụ khi t→∞.
c. không hội tụ khi t→∞.
d. tiến đến vô hạn khi t→∞.
3.4. Luật đóng ngắt của các phần tử quán tính được phát biểu :
a. Trong cuộn dây không có đột biến điện áp, trong tụ điện không có đột biến dòng điện, kể cả tại
thời điểm đóng ngắt mạch.
b. Trong cuộn dây không có đột biến dòng điện, trong tụ điện không có đột biến điện áp, kể cả tại
thời điểm đóng ngắt mạch.
c. Trong cuộn dây, tụ điện không có đột biến điện áp, kể cả tại thời điểm đóng ngắt mạch.
d. Cả ba phát biểu trên đều không đúng
3.5. Xác định hàm gốc UC(t) nếu biết ảnh của nó là ( ) (2 6)C
pU p
p p
= +
a. 31 1( )
6 2
t
CU t e
−= − b. 31 1( )
6 2
t
CU t e
−= +
c. 31 1( )
6 4
t
CU t e
−= + d. 31 1( )
6 4
t
CU t e
−= −
3.6. Dùng công thức biến đổi Heaviside hay bảng gốc- ảnh, hãy xác định hàm gốc iL(t) nếu biết
ảnh của nó là 2( ) ( 2)( 3)L
pi p
p p
= + +
86
Chương 3: Hiện tượng quá độ trong các mạch RLC
a. b. i t2 3( ) 2 3 2t tLi t e e te
− −= − + + 3t− 3te te e2 3( ) 2 3 2t tL − − −= − + +
3t− 3te te e
c. d. i t2 3( ) 2 3 2t tLi t e e e
− −= − + + 2 3( ) 2 3 2t tL − − −= − − −
K R1
C R2e(t)
Hình 3.22
3.7. Cho mạch điện như hình 3.22, với các số liệu:
R1=10Ω; R2=90Ω; C=2μF
e(t)=100V (DC).
Tại t=0 ngắt khoá K, hãy xác định uC(t) ?
3.8. Cho mạch điện như hình 3.23, với các số liệu:
R1=30Ω
K R1
C
R2
e1(t)
Hình 3.23
e2(t)
R2=20Ω
C=50μF
e1(t)=60V (DC)
e2(t)=10V (DC)
Tại t=0 đóng khoá K, hãy xác định uC(t) ?
3.9. Cho mạch điện như hình 3.24, với các số liệu: K R1
C R2e(t)
Hình 3.24
R1=10Ω; R2=90Ω; C=2μF
e(t)=100V (DC).
Tại t=0 đóng khoá K, hãy xác định uC(t) ?
3.10. Cho mạch điện như hình 3.25, với các số liệu:
R1=30Ω K R1
C
R2
e1(t)
Hình 3.25
e2(t)
R2=20Ω
C=50μF
e1(t)=6V (DC)
e2(t)=1V (DC)
Tại t=0 ngắt khoá K, hãy xác định uC(t) ?
3.11. Cho mạch điện như hình 3.26 với các số liệu:
K R1
C R2e(t)
Hình 3.26
R3R1=5Ω
R2=R3=10Ω
C=0,1μF
87
Chương 3: Hiện tượng quá độ trong các mạch RLC
e(t)=10V (DC).
Tại t=0 ngắt khoá K, hãy xác định uC(t)?
3.12. Cho mạch điện như hình 3.27 với các số liệu:
K R1
R3e(t)
Hình 3.27
L
R2
R1=5Ω
R2=R3=10Ω
L=1,5mH
e(t)=10V (DC).
Tại t=0 ngắt khoá K, hãy xác định iL(t) ?
3.13. Cho mạch điện như hình 3.28 với các số liệu:
K R1
R3e(t)
Hình 3.28
L
R2
R1=5Ω
R2=R3=10Ω
L=2mH
e(t)=10V (DC).
Tại t=0 ngắt khoá K, hãy xác định iL(t) ?
3.14. Cho mạch điện như hình 3.29 với các số liệu:
K R1
R2
e1(t)
Hình 3.29
L
R3
e2(t)
R1= R2=R3=10Ω
L= 2 mH
e1(t)=e2(t)= 15V (DC).
Tại t=0 ngắt khoá K, hãy xác định iL(t) ?
3.15. Cho mạch điện như hình 3.30 với các số liệu:
K R1
R2
e1(t)
Hình 3.30
L e2(t)
R1=5Ω
R2=10Ω
L=1 mH
e1(t)=e2(t)= 10V (DC).
Tại t=0 ngắt khoá K, hãy xác định iL(t)?
3.16. Cho mạch điện như hình 3.31 với các số liệu:
R1= R2=R3=10Ω
K
R1
C
R2
e(t)
C=2μF
R B3B
88
Hì h 3 31
Chương 3: Hiện tượng quá độ trong các mạch RLC
e(t)=30V (DC).
Tại t=0 đóng khoá K, hãy xác định uC(t)?
C R i(t) u(t)
Hình 3.32
3.17. Xét mạch điện như hình 3.32. Nếu
0t ≥= ,sin)( 0tti ω , giả thiết hệ không
có năng lượng ban đầu, tức uC(0-)=0, tính
u(t).
3.18. Mạch điện cấp hai, RLC nối tiếp như
hình 3.33a với L=0.5mH, R=5Ω, C=2nF.
-Nguồn tác động: e(t)=1(t).s(t) [Vol].
-Dạng của s(t) như hình 3.33b.
L R
C
Hình 3.33a
e(t) uC(t)
s(t)[Vol]
t(ms)
Hình 3.33b
0 2 2.8-1.2 -2 0.8
10
a. Tính và vẽ đồ thị dòng điện i(t) sinh ra trong mạch và điện áp UC(t).
b. Trong trường hợp R=1Ω ( tức là phẩm chất của mạch tăng lên 5 lần ), các thông số khác không
thay đổi, hãy xét i(t) và UC(t) trong trường hợp này.
3.19. Mạch điện cấp hai, RLC song song
hình 3.34a với C=10nF, R=50KΩ. Nguồn
tác động Ing(t)=1(t).s(t). Như mô tả ở hình
3.34b, biểu thức của s(t) trong một chu kỳ:
⎩⎨
⎧
≤<
≤≤=
−
(ms) 6t(ms) 2 0,
(ms) 20 ,10cos10
)(
...