manhthuongle

New Member
Luận văn: Rèn luyện kỹ năng giải phương trình lượng giác cho học sinh trung học phổ thông : Luận văn ThS. Giáo dục học: 60 14 01 11
Nhà xuất bản: Đại học giáo dục
Ngày: 2014
Miêu tả: 90 p. + CD-ROM
Luận văn ThS. Lý luận và phương pháp dạy học (Bộ môn Toán) -- Trường Đại học Giáo dục. Đại học Quốc gia Hà Nội, 2014
Xuất xứ: Foxit Reader PDF Printer phiên bản 6.1.0.0923
MỤC LỤC
Lời Thank ..............................................................................................................i
Mục lục...................................................................................................................ii
Danh mục các bảng ..............................................................................................iv
MỞ ĐẦU................................................................................................................1
Chương 1: CƠ SỞ LÝ LUẬN VÀ THỰC TIỄN..................................................4
1.1. Dạy học giải bài tập toán ..................................................................................4
1.1.1. Mục đích........................................................................................................4
1.1.2. Vai trò...........................................................................................................4
1.1.3. Ý nghĩa..........................................................................................................5
1.2. Kỹ năng và kỹ năng giải toán ............................................................................6
1.2.1. Quan niệm về kỹ năng, kỹ năng giải toán.......................................................6
1.2.2. Sự hình thành kỹ năng ...................................................................................6
1.2.3. Điều kiện để có kỹ năng.................................................................................8
1.2.4. Các mức độ của kỹ năng giải toán..................................................................8
1.3. Nhiệm vụ rèn luyện kỹ năng giải toán cho học sinh...........................................8
1.3.1. Mục tiêu dạy môn toán ..................................................................................8
1.3.2. Yêu cầu rèn luyện kỹ năng giải toán cho học sinh trung học phổ thông..........9
1.4. Giải pháp rèn luyện kỹ năng giải toán cho học sinh...........................................9
1.4.1. Tổ chức các hoạt động học tập đảm bảo tính chủ động, tích cực, độc lập
của học sinh trong quá trình chiếm lĩnh tri thức và rèn luện kỹ năng........................9
1.4.2. Trang bị các tri thức về phương pháp giải toán cho học sinh ........................10
1.4.3. Quy trình hình thành kỹ năng giải phương trình lượng giác cho học sinh.....11
1.5. Thực trạng dạy và học phương trình lượng giác ở trường trung học phổ
thông .....................................................................................................................11
1.5.1. Thực trạng học phương trình lượng giác ở trường trung học phổ thông........11
1.5.2. Thực trạng dạy phương trình lượng giác ở trường trung học phổ thông........12
Kết luận chương 1 .................................................................................................14
CHƯƠNG 2: RÈN LUYỆN KỸ NĂNG GIẢI PHƯƠNG TRÌNH LƯỢNG
GIÁC CHO HỌC SINH TRUNG HỌC PHỔ THÔNG ....................................15
2.1. Cấu trúc nội dung phần phương trình lượng giác ............................................15
Ket-noi.com kho tai lieu mien phi Ket-noi.com kho tai lieu mien phiiii
2.1.1. Mục tiêu chung............................................................................................15
2.1.2. Cấu trúc nội dung ........................................................................................16
2.2. Các phương pháp giải phương trình lượng giác ..............................................16
2.2.1. Phương pháp đặt ẩn phụ...............................................................................16
2.2.2. Sử dụng các công thức lượng giác để giải phương trình lượng giác..............37
2.2.3. Phương pháp đưa về dạng tích .....................................................................44
2.2.4. Phương pháp đánh giá..................................................................................49
2.2.5. Một số bài toán giải phương trình lượng giác khác.......................................55
2.3. Một số giáo án minh họa.................................................................................57
2.3.1. Giáo án 1 .....................................................................................................58
2.3.2. Giáo án 2 .....................................................................................................67
2.3.3. Giáo án 3 .....................................................................................................73
Kết luận chương 2 .................................................................................................81
CHƯƠNG 3: THỰC NGHIỆM SƯ PHẠM .......................................................82
3.1 Mục đích và nhiệm vụ thực nghiệm.................................................................82
3.1.1. Mục đích thực nghiệm .................................................................................82
3.1.2. Nhiệm vụ thực nghiệm.................................................................................82
3.2. Nội dung thực nghiệm ....................................................................................82
3.3. Tổ chức thực nghiệm ......................................................................................82
3.3.1. Kế hoạch......................................................................................................82
3.3.2. Tiến hành thực nghiệm sư phạm ..................................................................83
3.4. Kết quả thực nghiệm sư phạm.........................................................................83
3.4.1. Kết quả thực nghiệm sư phạm......................................................................83
3.4.2. Xử lý kết quả thực nghiệm sư phạm.............................................................84
3.4.3. Phân tích kết quả thực nghiệm sư phạm .......................................................86
Kết luận chương 3 .................................................................................................88
KẾT LUẬN VÀ KHUYẾN NGHỊ ......................................................................89
TÀI LIỆU THAM KHẢO...................................................................................91
PHỤ LỤC.............................................................................................................92iv
DANH MỤC CÁC BẢNG
Bảng 3.1. Kết quả ba bài kiểm tra .........................................................................84
Bảng 3.2. Bảng tổng hợp các tham số của hai nhóm ĐC và TN (Bài kiểm tra thứ
nhất)......................................................................................................................85
Bảng 3.3. Bảng tổng hợp các tham số của hai nhóm ĐC và TN (Bài kiểm tra thứ
hai)........................................................................................................................85
Bảng 3.4. Bảng tổng hợp các tham số của hai nhóm ĐC và TN (Bài kiểm tra thứ
ba).........................................................................................................................85
Bảng 3.5. Bảng tổng hợp đại lượng kiểm định của các bài kiểm tra.......................86
Ket-noi.com kho tai lieu mien phi Ket-noi.com kho tai lieu mien phi1
MỞ ĐẦU
1. Lý do chọn đề tài
Trong nền kinh tế thế kỷ 21 cùng với sự bùng nổ của tri thức, sự bùng nổ của
khoa học công nghệ thì việc đổi mới Giáo dục là một điểu tất yếu. Và để nâng cao
chất lượng nguồn nhân lực, đổi mới toàn diện và phát triển nhanh giáo dục và đào
tạo Đảng ta đã đặt ra mục tiêu phát triển giáo dục là quốc sách hàng đầu. Phát triển
con người Việt Nam toàn diện với tư cách là động lực của sự nghiệp xây dựng xã
hội mới đồng thời là mục tiêu của chủ nghĩa xã hội. Đó là “con người phát triển cao
về trí tuệ, cường tráng về thể chất, phong phú về tinh thần, trong sáng về đạo đức”.
Vì vậy đổi mới trong Giáo dục phù hợp với mục tiêu trên chính là đổi mới nội dung,
chương trình và không thể không đổi mới phương pháp học như thế nào và dạy như
thế nào?
Trong các môn học ở bậc trung học phổ thông, môn toán có vai trò quan trọng
trong việc phát triển trí tuệ cho học sinh, cung cấp cho các em kiến thức cơ bản, cần
thiết để học tập các môn học khác và giải quyết một số bài toán thực tiễn. Kỹ năng
giải toán có một vị trí đặc biệt quan trọng, bởi vì không có kỹ năng thì không thể
phát triển được tư duy và lối thoát cho bài toán. Vì vậy việc rèn luyện kỹ năng giải
toán cho học sinh là một yêu cầu của việc đổi mới phương pháp dạy học hiện nay.
Phương trình là mảng kiến thức cơ bản, quan trọng và xuyên suốt trong
chương trình Toán phổ thông, trong đó có phương trình lượng giác. Các bài toán
về phương trình lượng giác thường xuất hiện trong các kì thi tuyển sinh đại học,
cao đẳng và các kì thi học sinh giỏi. Để giải được thành thạo các phương trình
lượng giác không những các em phải nắm vững các phương trình lượng giác cơ
bản mà còn phải biết nhận dạng, vận dụng linh hoạt các phương pháp giải cho
từng phương trình lượng giác. Vì vậy bên cạnh yếu tố quan trọng để giải phương
trình lượng giác là khả năng sáng tạo bẩm sinh của các em thì việc giáo viên hệ
thống các dạng bài tập nhằm rèn luyện kỹ năng giải phương trình lượng giác cho
học sinh là rất cần thiết.
Từ những lý do nói trên với mong muốn góp phần nâng cao chất lượng dạy và
học nội dung phương trình lượng giác, tui chọn đề tài nghiên cứu luận văn là “Rèn
luyện kỹ năng giải phương trình lượng giác cho học sinh trung học phổ thông”.2
2. Mục đích nghiên cứu
Xác định nội dung và phương pháp rèn luyện kỹ năng giải phương trình lượng
giác cho chọ sinh trên cơ sở trình bày các phương pháp giải phương trình lượng
giác nhằm góp phần nâng cao chất lượng dạy và học môn toán.
3. Nhiệm vụ nghiên cứu
- Nhiệm vụ 1. Nghiên cứu lý luận về dạy học giải bài tập toán, kỹ năng giải toán.
- Nhiệm vụ 2. Nghiên cứu thực trạng dạy và học giải phương trình lượng giác
ở trường trung học phổ thông, cấu trúc nội dung chương trình phần phương trình
lượng giác.
- Nhiệm vụ 3. Xây dựng các bài tập và giáo án nhằm rèn luyện kỹ năng giải
phương trình lượng giác cho học sinh.
- Nhiệm vụ 4. Thực nghiệm sư phạm nhằm kiểm nghiệm tính khả thi và hiệu
quả của đề tài.
4. Khách thể và đối tượng nghiên cứu
4.1. Khách thể nghiên cứu
Là quá trình dạy học giải phương trình lượng giác ở trường trung học phổ
thông.
4.2. Đối tượng nghiên cứu
Là các biện pháp sư phạm nhằm rèn luyện kỹ năng giải phương trình lượng
giác của học sinh.
5. Phạm vi nghiên cứu
- Mẫu khảo sát: Học sinh lớp 11 năm học 2013-2014 trường THPT Vân Nội –
Đông Anh – Hà Nội.
- Phạm vi về thời gian: Từ tháng 1/2014 đến 12/2014 và kinh nghiệm thực
giảng ở trường trung học phổ thông Vân Nội – Đông Anh – Hà Nội.
- Phạm vi về nội dung: Các phương pháp giải phương trình lượng giác và ví dụ.
6. Vấn đề nghiên cứu
Làm thế nào để rèn luyện kỹ năng giải phương trình lượng giác cho chọ sinh
trung học phổ thông?
7. Giả thuyết nghiên cứu
Nếu hệ thống được các kỹ năng nhận dạng và giải một số loại phương trình
Ket-noi.com kho tai lieu mien phi Ket-noi.com kho tai lieu mien phi3
lượng giác, lựa chọn được các ví dụ, các bài tập và có biện pháp rèn luyện kỹ năng
giải phương trình lượng giác thì sẽ giúp các em học sinh học tốt nội dung phương
trình lượng giác và tạo được hứng thú để học môn toán.
8. Ý nghĩa lý luận và thực tiễn của đề tài
8.1. Ý nghĩa lý luận
Cung cấp một cách hệ thống và rõ ràng cơ sở lý luận về kỹ năng giải toán.
8.2. Ý nghĩa thực tiễn
Những phương pháp giải phương trình lượng giác đưa ra trong đề tài giúp rèn
luyện được kỹ năng giải phương trình lượng giác cho học sinh.
9. Phương pháp nghiên cứu
- Nghiên cứu lý luận và phân tích tổng hợp: Thực hiện nhiệm vụ 1, 3. Đọc sách,
tham khảo tài liệu, các bài báo, bài nghiên cứu trước để tìm hiểu về kỹ năng giải toán,
về dạy học giải bài tập toán. Đồng thời tìm hiểu các biện pháp được đề xuất để rèn
luyện kỹ năng giải phương trình lượng giác cho học sinh.
- Phương pháp nghiên cứu thực tiễn: Thực hiện nhiệm vụ 2,3. Sử dụng phiếu
điều tra về tình hình dạy và học phương trình lượng giác. Phỏng vấn trực tiếp giáo
viên và học sinh về các biện pháp rèn luyện kỹ giải phương trình lượng giác.
- Phương pháp thực nghiệm sư phạm: Thực hiện nhiệm vụ 4. Soạn và dạy thực
nghiệm một số giáo án về giải phương trình lượng giác, sau đó phát phiếu điều tra
lấy thông tin phản hồi từ người học để đánh giá tính khả thi và hiệu quả của đề tài.
10. Cấu trúc luận văn
Ngoài phần mở đầu, kết luận, luận văn được trình bày trong 3 chương
Chương 1. Cơ sở lý luận và thực tiễn
Chương 2. Rèn luyện kỹ năng giải phương trình lượng giác cho học sinh
Chương 3. Thực nghiệm sư phạm.4
Chương 1
CƠ SỞ LÝ LUẬN VÀ THỰC TIỄN
1.1. Dạy học giải bài tập toán
Ở truờng phổ thông, dạy toán là dạy hoạt động toán học. Đối với học sinh
có thể xem giải toán là hình thức chủ yếu của hoạt động toán học. Các bài tập
toán ở trừơng phổ thông là một phương tiện rất có hiệu quả và không thể thay thế
được trong việc giúp học sinh nắm vững tri thức, phát triển tư duy, hình thành kỹ
năng kĩ xảo, ứng dụng toán học vào thực tiễn. Hoạt động giải bài tập toán là điều
kiện để thực hiện tốt các nhiệm vụ dạy học toán ở trường phổ thông. Vì vậy, tổ
chức có hiệu quả việc dạy giải bài tập toán học có vai trò quyết định đối với chất
lượng dạy học toán.
1.1.1. Mục đích
Một trong những mục đích dạy toán ở trường phổ thông là:
Phát triển ở học sinh những năng lực và phẩm chất trí tuệ, giúp học sinh biến
những tri thức khoa học của nhân loại được tiếp thu thành kiến thức của bản thân,
thành công cụ để nhận thức và hành động đúng đắn trong các lĩnh vực hoạt động
cũng như trong học tập hiện nay và sau này.
Làm cho học sinh nắm được một cách chính xác, vững chắc và có hệ thống
những kiến thức và kỹ năng toán học phổ thông cơ bản, hiện đại, phù hợp với thực
tiễn và có năng lực vận dụng những tri thức đó vào những tình huống cụ thể, vào
đời sống, vào lao động sản xuất, vào việc học tập các bộ môn khoa học khác.
1.1.2. Vai trò
Ở trường phổ thông, dạy toán là dạy hoạt động toán học. Đối với học sinh
có thể xem giải toán là hình thức chủ yếu của hoạt động toán học. Các bài tập
toán ở trừơng phổ thông là một phương tiện rất có hiệu quả và không thể thay thế
được trong việc giúp học sinh nắm vững tri thức, phát triển tư duy, hình thành kỹ
năng kĩ xảo, ứng dụng toán học vào thực tiễn. Hoạt động giải bài tập toán là điều
kiện để thực hiện tốt các nhiệm vụ dạy học toán ở trường phổ thông. Vì vậy, tổ
chức có hiệu quả việc dạy giải bài tập toán học có vai trò quyết định đối với chất
lượng dạy học toán.
Ket-noi.com kho tai lieu mien phi Ket-noi.com kho tai lieu mien phi5
Toán học có vai trò lớn trong đời sống, trong khoa học và công nghệ hiện
đại, kiến thức toán học là công cụ để học sinh học tốt các môn học khác, giúp học
sinh hoạt động có hiệu quả trong mọi lĩnh vực. Các-Mác nói “Một khoa học chỉ
thực sự phát triển nếu nó có thể sử dụng được phương pháp của toán học”.
Môn toán có khả năng to lớn giúp học sinh phát triển các năng lực trí tuệ như:
phân tích, tổng hợp, so sánh, đặc biệt hóa, khái quát hóa...Rèn luyện những
phẩm chất, đức tính của người lao động mới như: tính cẩn thận, chính xác, tính kỷ
luật, khoa học, sáng tạo....
1.1.3. Ý nghĩa
Ở trường phổ thông giải bài tập toán là hình thức tốt nhất để củng cố, hệ
thống hóa kiến thức và rèn luyện kỹ năng, là một hình thức vận dụng kiến thức
đã học vào những vấn đề cụ thể, vào thực tế, vào những vấn đề mới, là hình thức
tốt nhất để giáo viên kiểm tra về năng lực, về mức độ tiếp thu và khả năng vận
dụng kiến thức đã học. Việc giải bài tập toán có tác dụng lớn trong việc gây hứng
thú học tập cho học sinh nhằm phát triển trí tuệ và góp phần giáo dục, rèn
luyện con người học sinh về nhiều mặt.
Mỗi bài tập toán đặt ra ở một thời điểm nào đó của quá trình dạy học đều chứa
đựng một cách tường minh hay ẩn tàng những chức năng khác nhau. Các chức
năng đó là:
- Chức năng dạy học: Bài tập toán nhằm hình thành củng cố cho học sinh
những tri thức, kỹ năng, kĩ xảo ở các giai đoạn khác nhau của quá trình dạy học.
- Chức năng giáo dục: Bài tập toán nhằm hình thành cho học sinh thế giới
quan duy vật biện chứng, hứng thú học tập, sáng tạo, có niền tin và phẩm chất đạo
đức của người lao động mới.
- Chức năng phát triển: Bài tập toán nhằm phát triển năng lực tư duy cho học
sinh, đặc biệt là rèn luyện những thao tác trí tụê hình thành những phẩm chất của
tư duy khoa học.
- Chức năng kiểm tra: Bài tập toán nhằm đánh giá mức độ kết quả dạy và học,
đánh giá khả năng độc lập học toán, khả năng tiếp thu, vận dụng kiến thức và
trình độ phát triển của học sinh.
Hiệu quả của việc dạy toán ở trường phổ thông phần lớn phụ thuộc vào việc6
khai thác và thực hiện một cách đầy đủ các chức năng có thể có của các tác giả viết
sách giáo khoa đã có dụng ý đưa vào chương trình. Người giáo viên phải có nhiệm
vụ khám phá và thực hiện dụng ý của tác giả bằng năng lực sư phạm của mình.
Việc giải một bài toán cụ thể không những nhằm một dụng ý đơn nhất nào
đó mà thường bao hàm ý nghĩa nhiều mặt như đã nêu ở trên.
1.2. Kỹ năng và kỹ năng giải toán
1.2.1. Quan niệm về kỹ năng, kỹ năng giải toán
Khái niệm “kỹ năng” được sử dụng nhiều trong môn toán cũng như trong đời
sống. Vậy kỹ năng là gì?
Theo [12] “Kỹ năng là năng lực sử dụng các dữ kiện, các tri thức hay các
khái niệm đã có, năng lực vận dụng chúng để phát hiện những thuộc tính, bản chất
của các sự vật và giải quyết thành công nhiệm vụ lí luận hay thực hành xác định”.
Theo [12] “Kỹ năng là khả năng vận dụng tri thức khoa học vào thực tiễn”.
Trong đó khả năng được hiểu là sức đã có về mặt nào đó để có thể làm tốt việc gì.
Theo [9] “Kỹ năng là một nghệ thuật, là khả năng vận dụng những hiểu biết
có được ở bạn để đạt được mục đích của mình, kỹ năng còn có thể đặc trưng như
toàn bộ các thói quen nhất định, kỹ năng là khả năng làm việc có phương pháp”.
Theo [8] “Trong toán học kỹ năng là khả năng giải bài toán, thực hiện các
chứng minh cũng như phân tích có phê phán các lời giải và chứng minh nhận được”.
Từ những quan niệm trên về kỹ năng tui cho rằng: Kỹ năng giải toán là khả
năng vận dụng những kiến thức trong nội dung môn toán bao gồm: Định nghĩa,
khái niệm, định lý, thuật giải, phương pháp và kiến thức một số môn học khác
cũng như kiến thức thực tế để giải quyết những bài toán.
1.2.2. Sự hình thành kỹ năng
Theo từ điển giáo dục học, để hình thành được kỹ năng trước hết cần có kiến
thức làm cơ sở cho việc hiểu biết, luyện tập từng thao tác riêng rẽ cho đến khi
thực hiện được hành động theo đúng mục đích, yêu cầu… Do kiến thức là cơ sở
của kỹ năng cho nên tùy theo kiến thức học sinh cần nắm được mà có những yêu
cầu rèn luyện kỹ năng tương ứng.
Kỹ năng chỉ được hình thành thông qua quá trình tư duy để giải quyết các
nhiệm vụ đặt ra. Khi tiến hành tư duy trên các sự vật thì chủ thể thường phải biến
Ket-noi.com kho tai lieu mien phi Ket-noi.com kho tai lieu mien phi7
đổi, phân tích đối tượng để tách ra các khía cạnh và những thuộc tính mới. Quá
trình tư duy diễn ra nhờ các thao tác phân tích, tổng hợp trừu tượng hóa và khái
quát hóa cho tới khi hình thành được mô hình về một mặt nào đó của đối tượng
mang ý nghĩa bản chất đối với việc giải bài toán đã cho.
Con đường hình thành kỹ năng rất phong phú và nó phụ thuộc vào các tham số
như: Kiến thức xác định kỹ năng, yêu cầu rèn luyện kỹ năng, mức độ tích cực, chủ
động của học sinh. Có hai con đường để hình thành kỹ năng cho học sinh dó là:
- Truyền thụ cho học sinh những tri thức cần thiết, rồi sau đó đề ra cho học
sinh những bài toán vận dụng những tri thức đó. Từ đó học sinh sẽ phải tìm tòi cách
giải, bằng những con đường thử nghiệm đúng đắn hay sai lầm (Thử các phương
pháp rồi tìm ra phương pháp tối ưu), qua đó phát hiện ra các mốc định hướng tương
ứng, những cách cải biến thông tin, những thủ thuật hoạt động.
- Dạy cho học sinh nhận biết những dấu hiệu mà từ đó có thể xác định được
đường lối giải cho một dạng bài toán và vận dụng đường lối giải đó vào bài toán
cụ thể.
Thực chất của sự hình thành kỹ năng là tạo dựng cho học sinh khả năng nắm
vững một hệ thống phức tạp các thao tác nhằm làm biến đổi và sáng tỏ các thông tin
chứa đựng trong bài toán.
Khi hình thành kỹ năng cho học sinh cần tiến hành:
- Giúp học sinh biết cách tìm tòi để nhận ra các yếu tố đã cho, yếu tố phải tìm
và mối quan hệ giữa chúng.
- Giúp cho học sinh hình thành một mô hình khái quát để giải các bài toán
cùng loại.
- Xác lập được mối liên quan giữa bài toán mô hình khái quát và kiến thức
tương ứng.
Các yếu tố ảnh hưởng đến sự hình thành kỹ năng: Sự dễ dàng hay khó khăn
trong sự vận dụng kiến thức phụ thuộc ở khả năng nhận dạng kiểu nhiệm vụ,
dạng bài tập tức là tìm kiếm phát hiện những thuộc tính và quan hệ vốn có trong
nhiệm vụ hay bài tập để thực hiện một mục đích nhất định.
Sự hình thành kỹ năng bị ảnh hưởng bởi các yếu tố sau đây:
- Nội dung của bài tập, nhiệm vụ đặt ra được trừu tượng hóa hay bị che phủ8
bởi những yếu tố phụ làm chênh lệch hướng tư duy có ảnh hưởng tới sự hình thành
kỹ năng.
- Tâm thế và thói quen cũng ảnh hưởng tới sự hình thành kỹ năng. Vì thế tạo
tâm thế thuận lợi trong học tập sẽ giúp học sinh trong việc hình thành kỹ năng.
- Có khả năng khái quát hóa đối tượng một cách toàn thể.
1.2.3. Điều kiện để có kỹ năng
Muốn có kỹ năng về hành động nào đó chủ thể cần:
- Có kiến thức để hiểu được mục đích của hành động, biết được điều kiện,
cách thức để đến kết quả, để thực hiện hành động.
- Tiến hành hành động đối với yêu cầu đã đề ra.
- Đạt được kết quả phù hợp với mục đích đề ra.
- Có thể hành động có hiệu quả trong những điều kiện khác nhau.
- Có thể qua bắt chước, rèn luyện để hình thành kỹ năng nhưng phải trải qua
thời gian đủ dài.
1.2.4. Các mức độ của kỹ năng giải toán
Kỹ năng giải bài tập toán có thể chia thành ba mức độ:
- Biết làm: Vận dụng được lý thuyết để giải những bài tập cơ bản, hình thành
các thao tác cơ bản như: Viết các đại lượng theo ngôn ngữ toán học, viết chính xác
công thức, kí hiệu,… giải được những bài tập tương tự như bài mẫu.
- Thành thạo: Học sinh có thể giải nhanh, ngắn gọn, chính xác các bài
toán theo cách giải đã biết.
- Mềm dẻo, linh hoạt, sáng tạo: Tìm ra được những cách giải ngắn gọn,
chuyển hóa vấn đề khéo léo, cách giải quyết vấn đề độc đáo.
1.3. Nhiệm vụ rèn luyện kỹ năng giải toán cho học sinh
1.3.1. Mục tiêu dạy môn toán
Mục tiêu dạy môn học toán nằm trong mục tiêu giáo dục nói chung:
“Mục tiêu giáo dục phổ thông là giúp học sinh phát triển toàn diện về đạo
đức, trí tuệ, thể chất, thẩm mĩ và các kỹ năng cơ bản, phát triển năng lực cá nhân,
chức năng động và sáng tạo, hình thành nhân cách con người việt nam XHCN, xây
dựng tư cách và trách nhiệm công dân. Chuẩn bị cho học sinh tiếp tục học lên hoặc
đi vào cuộc sống lao động, tham gia xây dựng bảo vệ tổ quốc” (Theo luật giáo dục
Ket-noi.com kho tai lieu mien phi Ket-noi.com kho tai lieu mien phi9
Việt Nam (chỉnh sửa và bổ xung năm 2005)). Cụ thể hóa mục tiêu này ta có mục
tiêu dạy học môn toán là:
- Trang bị cho học sinh những tri thức, kỹ năng, phương pháp toán học phổ
thông, cơ bản, thiết thực.
- Phát triển trí tuệ cho học sinh.
- Rèn luyện kỹ năng ứng dụng toán học trong nghiên cứu khoa học và thực
tiễn cho học sinh.
- Trau dồi những phẩm chất, tình cảm, đạo đức tốt đẹp cho học sinh.
- Bảo đảm tính phổ cập, đồng thời phát hiện và bồi dưỡng các học sinh có
năng khiếu toán học.
Các mục tiêu thể hiện sự toàn diện, thống nhất và có quan hệ mật thiết, hỗ trợ,
bổ sung cho nhau. Trong các mục tiêu trên, mục tiêu phát triển trí tuệ cho học sinh
được đặt lên hàng đầu.
1.3.2. Yêu cầu rèn luyện kỹ năng giải toán cho học sinh trung học phổ thông
Việc rèn luyện kỹ năng giải toán nhằm đạt được các yêu cầu cần thiết sau:
- Giúp học sinh hình thành và nắm vững những mạch kiến thức cơ bản trong
chương trình.
- Giúp học sinh phát triển các năng lực trí tuệ. Cụ thể là phát triển:
+ Tư duy logic và ngôn ngữ chính xác.
+ Khả năng suy đoán, tư duy trừu tượng và trí tưởng tượng trong không gian.
+ Những thao tác tư duy như phân tích, tổng hợp, khái quát hóa…
+ Các phẩm chất trí tuệ như tư duy độc lập, tư duy linh hoạt và sáng tạo.
1.4. Biện pháp rèn luyện kỹ năng giải toán cho học sinh
Để rèn luyện được kỹ năng giải toán cho học sinh cần có các biện pháp đồng
bộ bao gồm các hoạt động sau:
1.4.1. Tổ chức các hoạt động học tập đảm bảo tính chủ động, tích cực, độc lập
của học sinh trong quá trình chiếm lĩnh tri thức và rèn luện kỹ năng
Tổ chức các hoạt động nhằm mục đích giúp học sinh nắm một cách vững chắc
và có hệ thống các kiến thức qui định trong chương trình. Căn cứ vào chương trình,
sách giáo viên mà mỗi thầy cô giáo cần xác định và chọn lọc các kiến thức và
kỹ năng để trang bị cho học sinh.10
Để tổ chức được các hoạt động học tập mà ở đó học sinh chủ động, tích cực
thì giáo viên cần:
- Tạo những tình huống gợi ra những hoạt động tương thích với nội dung và
mục tiêu dạy học.
- Có sự giao lưu giữa học sinh với học sinh, giữa giáo viên với học sinh.
- Điều chỉnh hoạt động học tập: Giúp đỡ học sinh vượt qua khó khăn bằng
cách phân tách một hoạt động thành những phần đơn giản hơn, đặt một số câu hỏi
có tính chất gợi ý, cung cấp cho học sinh một số tri thức phương pháp và nói chung
là điều chỉnh mức độ khó khăn của nhiệm vụ.
- Giúp học sinh xác nhận những tri thức đã đạt được trong quá trình hoạt động,
đưa ra những nhận xét cần thiết để học sinh hiểu tri thức đó một cách sâu sắc và đầy
đủ hơn.
Ngoài ra để rèn luyện kỹ năng giải toán cho học sinh thì giáo viên cần:
- Hướng dẫn học sinh tìm lời giải ở bài tập mẫu, cho các em làm bài tập tương
tự nhằm giúp các em rèn luyện kỹ năng.
- Xác định hệ thống bài tập toán học chủ yếu để học sinh rèn luyện kỹ năng
giải các bài tập cơ bản, bài tập nâng cao.
-Xây dựng sơ đồ định hướng khái quát, các thuật toán giải mỗi dạng bài tập.
- Sử dụng hệ thống bài tập sau mỗi bài, mỗi chương để giúp học sinh luyện tập
theo mẫu, không theo mẫu, tìm nhiều lời giải cho một bài tập
1.4.2. Trang bị các tri thức về phương pháp giải toán cho học sinh
Giáo viên cần rèn luyện cho học sinh giải toán theo qui trình bốn bước của
Polya rồi từ đó hình thành kỹ năng giải toán theo quy trình này.
Bước 1: Tìm hiểu nội dung bài toán
- Phát biểu đề bài dưới dạng thức khác nhau để hiểu rõ nội dung bài toán.
- Phân biệt cái đã cho và cái phải tìm, cái chứng minh.
-Có thể dùng công thức, kí hiệu,hình vẽ để hỗ trợ cho việcdiễn tả đềbài.
Bước 2: Tìm cách giải
- Tìm tòi, phát hiện cách giải nhờ những suy nghĩ có tính chất tiên đoán. Biến
đổi cái đã cho, cái phải tìm hay phải chứng minh, liên hệ cái đã cho, cái phải tìm với
những tri thức đã biết, liên hệ bài toán cần giải với một bài toán tương tự, một
trường hợp riêng, một trường hợp tổng quát,…
Ket-noi.com kho tai lieu mien phi Ket-noi.com kho tai lieu mien phi11
- Kiểm tra lời giải bằng cách xem kĩ lại từng bước thực hiện.
- Tìm những cách giải khác, so sánh chúng để tìm được cách hợp lí nhất.
Bước 3: Trình bày lời giải
Từ cách giải đã được phát hiện, sắp xếp các việc phải làm thành một chương
trình gồmcác bướctheo một trình tự thích hợp vàthực hiện các bướcđó.
Bước 4: Nghiên cứu sâu lời giải
- Nghiên cứu khả năng ứng dụng kết quả của lời giải.
- Nghiên cứu giải những bài toán tương tự, mở rộng haylật ngược vấn đề.
1.4.3. Quy trình hình thành kỹ năng giải phương trình lượng giác cho học sinh
Theo tui quy trình hình thành kỹ năng giải phương trình lượng giác cho học
sinh gồm ba bước sau:
Bước 1: Hướng dẫn học sinh giải một số bài toán mẫu ở trên lớp, có
phân tích phương pháp suy nghĩ, tìm lời giải, lưu ý cho học sinh những điểm
cần thiết.
Bước 2: Học sinh tự rèn luyện kỹ năng giải toán theo hệ thống bài toán có chủ
định của giáo viên, giáo viên phân tích, khắc phục những khó khăn, thiếu sót cho
học sinh.
Bước 3: Rèn luyện kỹ năng giải toán ở mức độ cao hơn, tổng hợp hơn.
1.5. Thực trạng dạy và học phương trình lượng giác ở trường trung học phổ
thông
1.5.1. Thực trạng học phương trình lượng giác ở trường trung học phổ thông
Trong quá trình giảng dạy của mình với những kinh nghiệm và trao đổi với
giáo viên và học sinh cho thấy lượng giác là một chủ đề khá khó trong chương trình
toán học trung học phổ thông. Mặc dù sách giáo khoa mới đã có nhiều giảm tải về
nội dung và yêu cầu đối với học sinh nhưng để học tốt phần lượng giác học sinh vẫn
gặp nhiều khó khăn do:
Học lý thuyết:
- Công thức lượng giác khá nhiều nên học sinh hay quên và dễ bị nhầm lẫn.
- Nội dung công thức lượng giác ở cuối chương trình lớp 10 nhưng giải
phương trình lượng giác lại nằm ở đầu chương trình lớp 11. Do quá trình học bị
ngắt quãng nên học sinh dễ bị quên kiến thức và phải ôn lại nhiều.12
- Mặc dù nắm vững các công thức lượng giác nhưng việc áp dụng công thức
nào là phù hợp với bài toán thì học sinh phải làm rất nhiều bài tập để vận dụng linh
hoạt các công thức đã học.
Khi làm bài tập:
- Việc tính toán, tư duy đối với phần lượng giác có sự khác nhau so với đại số
nên phần lớn học sinh gặp khó khăn khi bắt đầu học và làm quen, do đó nếu không
nắm vững và còn bỡ ngỡ với nội dung này các em sẽ dễ chán nản và lười học.
- Giải phương trình lượng giác là lĩnh vực mới, khác nhiều so với việc giải
phương trình thông thường các em được học ở lớp 10 nên học sinh thường khó diễn
đạt và trình bày lời giải, nhất là đối với bài toán lượng giác có điều kiện.
- Khi làm bài tập, học sinh thường vận dụng một cách máy móc theo những
dạng phương trình lượng giác cơ bản thường gặp nên khi gặp những dạng bài toán
không phải dạng quen thuộc các em thường khó giải quyết được.
- Để nắm được các phương pháp giải phương trình lượng giác một cách vững
chắc, nhuần nhuyễn phải mất một thời gian dài. Trong khi đó thời lượng ở lớp 11
dành chho phần này chỉ 17 tiết nên việc học sinh mở rộng tư duy linh hoạt đối với
dạng bài toán khác là khá khó. Do đó, để học sinh làm tốt các bài tập lượng giác khi
đi thi đại học thì giáo viên cần có phương pháp, chiến lược giảng dạy tốt.
- Tính bị động của học sinh khá lớn nên giáo viên vất vả trong quá trình giảng
dạy nếu yêu cầu cao đối với học sinh.
1.5.2. Thực trạng dạy phương trình lượng giác ở trường trung học phổ thông
Để hiểu sâu sắc và thấy được cái hay của các bài toán lượng giác thì giáo viên
và học sinh đều phải bỏ rất nhiều thời gian và công sức. Giáo viên cần có kinh
nghiệm giảng dạy cũng như chuyên môn vững vàng để có phương pháp dạy phù
hợp với từng nội dung trong phần lượng giác. Học sinh phải dành nhiều thời gian,
có sự nỗ lực và có hứng thú, say mê mới học tốt được phần này.
Từ kinh nghiệm giảng dạy của bản thân và ý kiến đóng góp của nhiều giáo
viên, học sinh tui thấy rằng:
- Muốn giải được phương trình lượng giác trước tiên học sinh phải nắm vững
các công thức lượng giác. Để củng cố kiến thức và giúp học sinh nắm vững, không
bị quên và nhớ lầm các công thức lượng giác, giáo viên nên yêu cầu học sinh chứng
Ket-noi.com kho tai lieu mien phi Ket-noi.com kho tai lieu mien phi13
minh các công thức lượng giác.
- Các dạng bài tập ở phần này rất phong phú và đa dạng nên giáo viên phải
dành nhiều thời gian chọn lọc, tổng hợp, khái quát hóa thành các dạng bài tập, các
phương pháp giải phù hợp với trình độ nhận thức của học sinh.
- Thời gian chữa bài tập không nhiều nhưng giáo viên vẫn phải đưa ra hệ
thống bài tập theo phương pháp giải cụ thể để học sinh nắm vững cách giải phương
trình lượng giác. Đồng thời, giáo viên yêu cầu học sinh về nhà tìm hiểu thêm để học
tốt phần này.
Theo tôi, một bài giảng của nhà giáo có trình độ và lương tâm, trong mỗi tiết
học phải mang lại cho người học một khối lượng kiến thức hoàn chỉnh kèm theo
phương pháp và tài liệu tra cứu mà tự học sinh có thể không có được. Như vậy có
thể tiết kiệm được thời gian giảng dạy trên lớp và tạo điều kiện cho học sinh tự
nghiên cứu, trau dồi kiến thức bằng vốn thời gian tự học ở nhà.
3.4.3. Phân tích kết quả thực nghiệm sư phạm
3.4.3.1. Phân tích kết quả thực nghiệm sư phạm về mặt định lượng
 Các giá trị đặc trưng
Dựa vào bảng tổng hợp các thông số tính toán ở trên, chúng tui rút ra được
những nhận xét sau:
- Điểm trung bình X của lớp thực nghiệm cao hơn lớp đối chứng. Trong hai
bài kiểm tra đầu điểm trung bình của hai lớp chênh lệch nhau không nhiều (0.733
điểm ở bài thứ nhất và 0.848 điểm ở bài thứ hai). Nhưng bài kiểm tra thứ ba thì
điểm trung bình của nhóm thức nghiệm cao hơn nhóm đối chứng 1.08 điểm. Điều
đó chứng tỏ học sinh lớp thực nghiệm nắm vững kiến thức và có kỹ năng vận dụng
kiến thức trong giải phương trình lượng giác tốt hơn lớp đối chứng. Đồng thời điểm
trung bình của lớp thực nghiệm tăng dần từ 6.793 lên 66.837 và 7.035 điểm. Tuy
điểm tăng không đáng kể nhưng cũng chứng minh được các em lớp thực nghiệm
dần làm quen được với phương pháp học mới và lĩnh hội kiến thức tốt hơn.
- Độ lệch chuẩn S có giá trị tương đối nhỏ nên số liueej thu được ít phân tán
do đó giá trị trung bình có độ tin cậy cao.

VTN VDC chứng tỏ mức độ phân tán quanh giá trị trung bình của lớp thực
nghiệm nhỏ hơn lớp đối chứng do đó chất lượng học của lớp thực nghiệm đồng đều
hơn lớp đối chứng.
Link Download bản DOC
Do Drive thay đổi chính sách, nên một số link cũ yêu cầu duyệt download. các bạn chỉ cần làm theo hướng dẫn.
Password giải nén nếu cần: ket-noi.com | Bấm trực tiếp vào Link để tải:

 
Last edited by a moderator:
Các chủ đề có liên quan khác
Tạo bởi Tiêu đề Blog Lượt trả lời Ngày
D Rèn luyện cho học sinh kỹ năng giải quyết các tình huống thực tiễn trong dạy học sinh học 8 Nông Lâm Thủy sản 0
D Rèn luyện kỹ năng giải quyết vấn đề cho học sinh trong dạy học bài tập toán ở trường THPT Luận văn Sư phạm 0
T Quy trình và nội dung rèn luyện kỹ năng nghiệp vụ sư phạm cho sinh viên khoa sư phạm- ĐHQG Hà Nội Luận văn Sư phạm 2
D rèn luyện kỹ năng giải bài tập cho học sinh trung bình, yếu môn hóa lớp 10 THPT Luận văn Sư phạm 0
M Rèn luyện kỹ năng hệ thống hóa kiến thức cho học sinh lớp 11 THPT trong dạy học sinh học Luận văn Sư phạm 0
K Biện pháp rèn luyện kỹ năng tự học vật lý cho học sinh chương Dao động cơ Vật lý 12 Cơ bản Luận văn Sư phạm 2
L rèn luyện kỹ năng thực hành qua dạy học lịch sử thế giới hiện đại từ năm 1917 đến năm 1945 cho học sinh lớp 11, trường THPT chuyên Trần Phú - Hải Phòng (chương trình chuẩn) Luận văn Sư phạm 0
B Rèn luyện kỹ năng giải các bài toán tìm giới hạn trong chương trình lớp 11 THPT ( Ban cơ bản) Luận văn Sư phạm 0
S Rèn luyện kỹ năng giải bài toán cho học sinh thông qua dạy học chương Tổ hợp và xác suất lớp 11 THPT ( Ban nâng cao ) Luận văn Sư phạm 0
B Rèn luyện kỹ năng diễn đạt viết cho học sinh huyện Thanh Liêm tỉnh Hà Nam trong dạy học Lịch sử thế giới cổ đại và trung đại lớp 10 THPT (chương trình chuẩn) Luận văn Sư phạm 0

Các chủ đề có liên quan khác

Top