nguyenclinhhugl
New Member
Download Phân loại và phương pháp giải toán 12 miễn phí
Cho hình chóp S.ABCD có đáy ABCD là hình thang vuông tại A và B. Cho SA = AB=2 BC = 2a ,SA = a và SA ⊥ (ABCD )
a/ Tính thể tích của khối chóp S.ABCD.
b/ Chứng minh rằng: CD ⊥ (SAC). Tính diện tích xung quanh khối chóp S.ABCD.
c/ Xác định tâm và bán kính mặt cầu qua 4 điểm S, A, B, C. Tính diện tích mặt cầu này.
Để tải bản DOC Đầy Đủ thì Trả lời bài viết này, mình sẽ gửi Link download cho
Tóm tắt nội dung:
− + +Điều kiện:
( )
( )
( )
2
3
3
2 0 2 2
2
4 0 4 0 4
6 4
6 0 66 0
x x x
x
x x x
x
x xx
+ > ≠ − ≠ − ≠ − − > ⇔ − > ⇔ < ⇔
− > − + >
( ) ( ) ( )1 1 1 1
4 4 4 4
1
6 3 log 2 3 log 3 log 4 3 log 6
4
x x x⇔ + − = − + +
3K¤QORừpLY¢SKư?ư?QJSK£SJLừrLWR£Q ZZZ0$7+91FRP 7KV/¬9ÅQÒR¢Q
&Kư?ư?QJ,,+¢PVừ?PưH–?+¢PVừ?OưH\WKừ?D–?+¢PVừ?/RJDULW ZZZPDWKYQFRP
( )( ) ( )( ) 1 1
4 4
log 4 2 log 4 6 4 2 4 6x x x x x x⇔ + = − + ⇔ + = − +
( ) ( )( )
( ) ( )( )
2
2
2
22 2
8 24 2 4 6 6 16 0
22 2
2 32 04 2 4 6 1 33
1 33
x
xx x
x xx x x x x
xx x x
x xx x x x
x
> − = > − > − = − =+ = − + + − = ⇔ ⇔ ⇔ ⇔ < − < − < − = − − =− − = − + = − = +
1 33
−
7/ Giải phương trình: ( ) 2 2 1
2
log 2 log 5 log 8 0 7x x− + + + =
Điều kiện:
2 0 2
5 0 5
x x
x x
− ≠ ≠ ⇔
+ ≠ ≠
( ) ( )( ) ( )( )2 27 log 2 5 log 8 2 5 8x x x x⇔ − + = ⇔ − + =
( )( )
( )( )
2
2
3
2 5 8 3 18 0
6
3 2 02 5 8
3 17
2
x
x x x x
x
x xx x
x
= − − + = + − = ⇔ ⇔ ⇔ = − + =− + = − ± =
8/ Giải phương trình: ( ) ( ) ( ) ( )
226 2
3
2 2 2 2
1
log 3 4 . log 8 log log 3 4 8
3
x x x x
− = + −
Điều kiện:
( )
( )
6
2
3
3 4 0
3 4 0 43 4 0
0
0 30
0
x
xx
x
xx
x
− > − ≠ − > ⇔ ⇔ < ≠
>> >
( )
2
2
2 2 2 2
6 1
8 log 3 4 .3 log 8 log 2 log 3 4
3 2
x x x x
⇔ − = + −
( ) ( )
22
2 2 2 2
6 log 3 4 . log 2 log 4 log 3 4x x x x⇔ − = + −
( ) ( )
22
2 2 2 2 2 2
2 log log 3 4 . log 2 log 3 4 2 log 3 4 . log 0x x x x x x⇔ − − + − − − =
( ) ( ) 2 2 2 2 2 2log log log 3 4 2 log 3 4 log 3 4 log 0x x x x x x⇔ − − − − − − + =
7KV/¬9ÅQÒR¢Q ZZZ0$7+91FRP3K¤QORừpLY¢SKư?ư?QJSK£SJLừrLWR£Q
ZZZPDWKYQFRP &Kư?ư?QJ,,+¢PVừ?PưH–?+¢PVừ?OưH\WKừ?D–?+¢PVừ?/RJDULW
( )( )
( )
2 2 2 2
2 22 2
2
2 2 2 2 2
2
2
log log 3 4 log 2 log 3 4 0
log log 3 4log log 3 4 0
log 2 log 3 4 0 log 2 log 3 4 log 3 4
0
0
3 4
3 4
3 4
3 4
9 25 16 0
x x x x
x xx x
x x x x x
x
x
x x
x x
x x
x x
x x
⇔ − − − − =
= −− − = ⇔ ⇔ − − = = − = −
> > = − = −⇔ ⇔ = − − = − − + =
1
2
16
9
x
x
x
= =
=
Thí dụ 2. Giải các phương trình logarit (đưa về cùng cơ số hay mũ hóa)
1/ ( )2log 9 2 3x x− = − ĐS: 0; 3x x= =
2/ ( ) ( ) ( )1 1 1
2 2 2
log 1 log 1 log 7 1x x x− + + − − = ĐS: 3x =
3/ ( ) ( ) ( )
2 3 3
1 1 1
4 4 4
3
log 2 3 log 4 log 6
2
x x x+ − = − + + ĐS: 2; 1 33x x= = −
4/ ( ) ( )
2
2 4 1
2
log 2 log 5 log 8 0x x+ + − + = ĐS: 3 176;
2
x x
±
= =
5/
2 2 1
2
log 2 log 5 log 8 0x x− + + + = ĐS:
3 17
3; 6
2
x x hay x
±
=− = =
6/ ( )4 2
2 1
1 1
log 1 log 2
log 4 2
x
x x
+
− + = + + ĐS: 5
2
x =
7/ ( )25log 2 65 2x x x− − + = ĐS: 5x = −
Thí dụ 3. Giải các phương trình logarit (sử dụng phương pháp đặt ẩn phụ, hoàn toàn)
1/ 1 2 1
5 log 1 logx x
+ =
− +
ĐS: 100; 1000x x= =
2/ ( ) ( )2 12 2log 2 1 .log 2 2 2x x++ + = ĐS: 0x =
3/ 2 2
3 3
log log 1 5 0x x+ + − = ĐS: 33x ±=
4/ ( )3 9
3
4
2 log .log 3 1
1 logx
x
x
− − =
−
ĐS: 1 ; 81
3
x x= =
5. Bài tập rèn luyện
Bài 1. Giải các phương trình logarit sau (đưa về cùng cơ số)
1/ ( )2log 1 1x x − = 2/ ( )2 2log log 1 1x x+ + =
3/ ( )ln ln 1 0x x+ + = 4/ ( )3 3log 7 2 log 2 2x + − =
5/
5 25 0,2
log log log 3x x+ = 6/ 2
5 1 5 1
5 25
log ( 1) log 5 log ( 2) 2log ( 2)x x x+ + = + − −
3K¤QORừpLY¢SKư?ư?QJSK£SJLừrLWR£Q ZZZ0$7+91FRP 7KV/¬9ÅQÒR¢Q
&Kư?ư?QJ,,+¢PVừ?PưH–?+¢PVừ?OưH\WKừ?D–?+¢PVừ?/RJDULW ZZZPDWKYQFRP
7/
1
lg( 6) lg(2 3) 2 lg25
2
x x+ − − = − 8/
5 5 5
log log ( 6) log ( 2)x x x= + − +
9/ ( )2 1
8
log 2 6.log 3 5 2x x− − − = 10/ ( ) ( )2 2log 3 log 1 3x x− + − =
11/ ( ) ( )4 4 4log 3 log 1 2 log 8x x+ − − = − 12/ ( ) ( )lg 2 lg 3 1 lg 5x x− + − = −
13/ ( ) ( )8 8
2
2 log 2 log 3
3
x x− − − = 14/ lg 5 4 lg 1 2 lg 0,18x x− + + = +
15/ ( ) ( )23 3log 6 log 2 1x x− = − + 16/ ( ) ( )2 2
5
1
log 3 log 1
log 2
x x+ + − =
17/ ( )4 4log log 10 2x x+ − = 18/ ( ) ( )5 1
5
log 1 log 2 0x x− − + =
19/ ( ) ( )2 2 2log 1 log 3 log 10 1x x− + + = − 20/ ( ) ( )9 3log 8 log 26 2 0x x+ − + + =
Bài 2. Giải các phương trình logarit sau (đưa về cùng cơ số)
1/ ( ) ( )2 22 0,52log 1 log 1 3x x x x+ + + + − = 2/ 22 0,5 0,25 2log ( 3) log 5 2log ( 1) log ( 1)x x x+ + = − − +
3/
3 13
3
log log log 6x x x+ + = 4/ ( ) ( ) ( )2 21 lg 2 1 lg 1 2 lg 1x x x x+ − + − + = −
5/
4 1 8
16
log log log 5x x x+ + = 6/ ( ) ( ) ( )2 22 lg 4 4 1 lg 19 2lg 1 2x x x x+ − + − + = −
7/
2 4 8
log log log 11x x x+ + = 8/ ( ) ( ) ( )1 1 1
2 2 2
log 1 log 1 1 log 7x x x− + + = + −
9/
2 2 3 3
log log log logx x= 10/
2 3 3 2
log log log logx x=
11/
2 3 3 2 3 3
log log log log log logx x x+ = 12/
2 3 4 4 3 2
log log log log log logx x=
13/
2 3 4 20
log log log logx x x x+ + = 14/
2 3 5 2 3 5
log log log log .log .logx x x x x x+ + =
15/
3
2 3 3 2
3 1
(log ).log log log
23
x
x x
x
− = + 16/
1 2
2
log 1 log 2 0
2 4
x x − + − =
17/ 2
( 3)
lg( 2 3) lg 0
( 1)
x
x x
x
+ + − + =
−
18/ 2 2 2
2 3 6
log ( 1).log ( 1) log ( 1)x x x x x x− − + − = − −
19/ 0,25
( 3)
2
2 log (4 )
log 6 1
log ( 3)x
x
x
+
− + =
+
20/
2 4
cos
log tan log 0
2cos sin
x
x
x x
+ =
+
21/ log 2 log 4
4 2
log log 2x x+ = 22/ ( ){ }4 3 2 2
1
log 2 log 1 log 1 3 log
2
x + + =
23/ ( ) ( )lg 2 1 lg 3 2 lgx x x+ + − = 24/ ( ) ( ) ( )ln 1 ln 3 ln 7x x x+ + + = +
Bài 3. Giải các phương trình logarit sau (đưa về cùng cơ số)
1/ ( )2log 9 2 3x x− = − 2/ ( )3log 3 8 2x x− = −
3/ ( )7log 6 7 1x x−+ = + 4/ ( )13log 4.3 1 2 1x x− − = −
5/ ( ) ( )5log 32log 9 2 5
xx −− = 6/ ( )2log 3.2 1 2 1 0x x− − − =
7KV/¬9ÅQÒR¢Q ZZZ0$7+91FRP3K¤QORừpLY¢SKư?ư?QJSK£SJLừrLWR£Q
ZZZPDWKYQFRP &Kư?ư?QJ,,+¢PVừ?PưH–?+¢PVừ?OưH\WKừ?D–?+¢PVừ?/RJDULW
7/ ( )2log 12 2 5x x− = − 8/ ( )5log 26 3 2x− =
9/ ( )12log 5 25 2x x+ − = 10/ ( )14log 3.2 5x x+ − =
11/ ( )11
6
log 5 25 2x x+ − =− 12/ ( )11
5
log 6 36 2x x+ − =
Bài 4. Giải các phương trình logarit (đưa về cùng cơ số)
1/ ( )25log 2 65 2x x x− − + = 2/ ( )21log 4 5 1x x x− − + =
3/ ( )2log 5 8 3 2x x x− + = 4/ ( )3 21log 2 2 3 1 3x x x x+ + − + =
5/ ( )3log 1 2x x− − = 6/ ( )log 2 2x x + =
7/ ( )22log 5 6 2x x x− + = 8/ ( )23log 1x x x+ − =
9/ ( )2log 2 7 12 2x x x− + = 10/ ( )2log 2 3 4 2x x x− − =
11/ ( )2log 2 1x x − = 12/ ( )23 5log 9 8 2 2x x x+ + + =
13/ ( )22 4log 1 1x x+ + = 14/
15
log 2
1 2x x
=−
−
15/ ( )2log 3 2 1x x− = 16/ ( )2 3log 3 1x x x+ + =
17/ ( )2log 2 5 4 2x x x− + = 18/ 216 64log log 3xx + =
Bài 5. Giải các phương trình logarit (đặt ẩn phụ, dạng đặt ẩn phụ hoàn toàn)
1/ 3 2log 2 log 2 logx x x− + = − 2/ 2
2 2
log 4 log 3 0x x− + =
3/ ( )...