dang_kim_dung
New Member
Download miễn phí Luận văn Phân tích chương trình mô phỏng một chiều AMPS – 1D (analysis of microelectronic and photonic structures)
MỤC LỤC
MỞ ĐẦU 3
CHƯƠNG 1 - KHÁI QUÁT VỀ PMT MÀNG MỎNG THẾ HỆ MỚI DỰA TRÊN LỚP HẤP THỤ CuIn1-xGaxSe2 (CIGS) 5
1.1 Lịch sử phát triển 5
1.2 Những thách thức đặt ra 7
1.3 Cấu trúc cơ bản và các tham số đặc trưng 9
1.3.1 Cấu trúc cơ bản của PMT 9
1.3.2 Các đặc trưng về hiệu năng hoạt động của PMT màng mỏng CIGS 10
1.4 Một số phương pháp chế tạo lớp hấp thụ CIGS 12
1.4.1 Đồng bốc bay từ các nguồn nguyên tố 12
1.4.2 Selen hóa của các lớp bán vật liệu dạng kim loại 13
1.4.3 Lắng đọng hơi hóa học 13
1.4.4 Các phương pháp pha lỏng nhiệt độ thấp 14
CHƯƠNG 2 - CHƯƠNG TRÌNH MÔ PHỎNG MỘTCHIỀU AMPS – 1D (Analysis of Microelectronic and Photonic Structures) 15
2.1 Phương trình Poisson 15
2.1.1 Nồng độ điện tử tự do và nồng độ lỗ trống tự do 16
2.1.2 Nồng độ trạng thái định xứ (ND+, NA-, pt, nt) 18
2.1.3 Nồng độ các mức sai hỏng (nt và pt) 22
2.2.1 Mật độ dòng điện tử và mật độ dòng lỗ trống (Jn và Jp) 23
2.2.2 Quá trình tái hợp của hạt dẫn 24
CHƯƠNG 3 - CÁC THÔNG SỐ ĐẦU VÀO CỦA CHƯƠNG TRÌNH MÔ PHỎNG MỘT CHIỀU AMPS – 1D 26
3.1 Các tham số cơ bản 26
3.1.1 Điều kiện môi trường 26
3.1.2 Cấu trúc mô hình. 29
3.2 Tính chất chung. 30
3.2.1 Điều kiện ban đầu, hệ số phản xạ mặt trước và sau 30
3.2.2 Hệ số phản xạ 30
3.2.3 Sự tái hợp bề mặt 31
3.3 Tính chất của các lớp 31
3.3.1 Tốc độ hạt tải và mối liên hệ với mật độ trạng thái 32
3.3.2 Nồng độ hạt tải 33
3.3.3 Sự dịch chuyển năng lượng giữa các lớp (chuyển tiếp dị chất) 33
3.3.4 Hệ số hấp thụ 35
3.4 Các trạng thái sai hỏng 35
3.4.1 Mật độ trạng thái sai hỏng trung hoà và ion hoá 37
3.4.2 Sự phân bố sai hỏng 38
CHƯƠNG 4 - KẾT QUẢ VÀ THẢO LUẬN 39
4.1 Ảnh hưởng của hệ số phản xạ mặt trước 39
4.2 Ảnh hưởng của độ chênh lệch năng lượng đáy vùng dẫn (∆ EC) tại mặt tiếp xúc giữa các lớp 43
4.3 Ảnh hưởng của độ dầy của lớp hấp thụ CIGS 46
4.4 Ảnh hưởng của độ rộng vùng cấm Eg của lớp hấp thụ CIGS 49
KẾT LUẬN 53
TÀI LIỆU THAM KHẢO 54
http://cloud.liketly.com/flash/edoc/jh2i1fkjb33wa7b577g9lou48iyvfkz6-swf-2013-12-27-luan_van_phan_tich_chuong_trinh_mo_phong_mot_chieu.GFVolPH4xP.swf /tai-lieu/de-tai-ung-dung-tren-liketly-52131/
Để tải bản Đầy Đủ của tài liệu, xin Trả lời bài viết này, Mods sẽ gửi Link download cho bạn sớm nhất qua hòm tin nhắn.
Ai cần download tài liệu gì mà không tìm thấy ở đây, thì đăng yêu cầu down tại đây nhé:
Nhận download tài liệu miễn phí
Tóm tắt nội dung tài liệu:
CGS như 2 pha tách riêng nếu nhiệt độ phản ứng quá nhỏ hay thời gian quá ngắn. Nhiệt độ phản ứng cao cũng có thể dễ dàng hình thành Mo2Se. Phương pháp chalcogen hóa cũng đưa ra khả năng hình thành các màng mỏng CuIn(S,Se)2 bằng đưa cả bán vật liệu Se và S vào môi trường ủ.Lắng đọng hơi hóa học
Các công nghệ lắng đọng pha khí hóa học cũng như lắng đọng hơi hóa học (MOCVD) và chuyển dạng hơi nén chặt cũng đã được sử dụng với việc chế tạo các màng mỏng CIS và CIGS. Thuận lợi của quá trình này là nhiệt độ lắng đọng thấp hơn so với các quá trình bốc bay.
Nhóm McAleese đã thu được các màng CIS ở 400oC – 500oC bằng MOCVD nhiệt tại các áp suất thấp từ các hợp phức methyl-n-hexyldiselenocarbamate của Cu (II) và In (III) (Cu (Se2CNCH3C6H13)2 và In (Se2CNCH3C6H13)3). Các màng thu được gần với hợp thức và khe vùng của chúng được đánh giá khoảng 1,08 eV. Các mẫu XRD của các màng chỉ ra có nhiễu xạ chính của pha chalcopyrite.
Quá trình PECVD cũng được báo cáo mà hexafluoroacetylacetonate tạo phức Cu(hfac)2 và In(hfac)2 sử dụng như các bán vật liệu dạng kim loại và 4-methy l-1, 2, 3-selenadiazole như nguồn Se. H2 được sử dụng như các khí tải với các bán vật liệu dạng kim loại. Nhiệt độ lắng đọng tăng dần từ 150 – 400oC. Màng thu được là có khả năng hụt Se vì Se mất mát trong suốt quá trình lắng đọng làm lạnh xuống trong chân không.
Các phương pháp pha lỏng nhiệt độ thấp
Các phương pháp chế tạo không chân không, gồm điện hóa, mạ không điện cực, lắng đọng bể hóa học và “các phương pháp dựa vào hạt” v.v… Các phương pháp này vốn đã có giá thành thấp vì nhiệt độ chế tạo nói chung là thấp và các thiết bị đơn giản. Các chất hấp thụ được chế tạo bằng các phương pháp này thường cần xử lý trước khi chế tạo tại các nhiệt độ cao trong các môi trường chứa Se để thu được các thiết bị có hiệu suất cao.
Nhóm Bhattacharya đã tập trung nghiên cứu việc chế tạo pin mặt trời CIGS từ các tiền hạt được làm bằng điện hóa, mạ không điện cực và lắng đọng bể hóa học.
Các tiền hạt được điện hóa được chế tạo tại nhiệt độ phòng từ các dung dịch ngậm nước chứa CuCl2, InCl3, H2SO3, GaCl3 và LiCl. Màng thu được rất giàu đồng nhưng các hiệu suất pin mặt trời thu được là 15,4 % sau khi hiệu chỉnh hợp thức.
Mạ không điện cực dựa trên các phản ứng oxi hóa khử không có nguồn dòng ngoài. Các màng Cu-In-Ga-Se giàu đồng được làm từ các dung dịch ngậm nước chứa CuCl2, InCl3, H2SeO3, GaCl3 và LiCl, việc sử dụng điện cực Fe như tác nhân khử. Sau sự điều chỉnh hợp thức, các màng được sử dụng cho việc chế tạo các PMT và hiệu suất chuyển đổi đã đạt được là 13,4 % .
Các màng mỏng CIGS được chế tạo bằng lắng đọng hơi hóa học sử dụng sodium selenosulfate (Na2SeSO3) là tiền hạt Se. Trong các màng được chế tạo tại 40oC sử dụng Cu(NH3)42+ và In3+ được tạo phức bằng citrate là các tiền hạt kim loại. Sau bước tiền ủ ở 520oC trong không khí, VOC khoảng 0,3V được đo với chuyển tiếp dị thể n-Si/p-CIS.
CHƯƠNG 2CHƯƠNG TRÌNH MÔ PHỎNG MỘTCHIỀU AMPS – 1D(Analysis of Microelectronic and Photonic Structures)
Chương trình mô phỏng một chiều AMPS – 1D là một chương trình đa năng để khảo sát ảnh hưởng cấu tạo và tính chất vật liệu của các cấu trúc bán dẫn đa lớp. Nội dung của chương trình là giải phương trình Poisson và hai phương trình liên tục với các điều kiện biên thích hợp [17].
Phương trình Poisson
Trong không gian một chiều, phương trình Poisson mô tả sự phân bố điện tích, điện thế, vùng năng lượng được cho bởi phương trình sau:
(2.1)
Trong đó:
Ψ: Thế tĩnh điện
n: Nồng độ điện tử tự do
p: Nồng độ lỗ trống tự do
nt: Nồng độ các điện tử bị bắt
pt: Nồng độ lỗ trống bị bắt
ND: Nồng độ donor
NA: Nồng độ acceptor
ε: Hằng số điện môi
q: Điện tích của một điện tử
Tất cả những đại lượng trên đều là hàm theo vị trí x, chúng ta sẽ khảo sát chi tiết hơn về các đại lượng này ở các mục dưới đây.
Nồng độ điện tử tự do và nồng độ lỗ trống tự do
Số điện tử tự do nằm trong khoảng dE từ E đến (E+dE) trong một đơn vị thể tích là:
(2.2)
Với N(E) là mật độ trạng thái xác định bởi biểu thức sau:
(2.3)
f0(E) là hàm phân bố Fermi – Dirac:
(2.4)
Nồng độ điện tử nằm trong vùng dẫn là:
(2.5)
Vì hàm Fermi – Dirac giảm rất nhanh khi năng lượng lớn do đó có thể thay thế Emax là : (2.6)
Trong trạng thái cân bằng nhiệt động, nồng độ điện tử trong vùng dẫn là:
(2.7)
Đối với nồng độ lỗ trống tự do trong vùng hoá trị xác định tương tự là:
(2.8)
Đối với vật liệu kết tinh thì NC và NV xác định bằng biểu thức sau:
(2.9)
(2.10)
Phương trình (2.7) và (2.8) sử dụng trong mô hình AMPS – 1D trong trường hợp cân bằng nhiệt động. Trong trường hợp suy biến thì biểu thức của nồng độ điện tử tự do và lỗ trống tự do sẽ là:
(2.11)
(2.12)
Hệ số suy biến xác định là:
(2.13)
Và hệ số suy biến với nồng độ lỗ trống tự do sẽ là:
(2.14)
Khi một thiết bị lệch khỏi trạng thái cân bằng nhiệt động bởi các tác động của thế hiệu dịch, sự chiếu sáng hay cả hai yếu tố đó thì giá trị của nồng độ điện tử tự do và lỗ trống tự do được tính theo biểu thức (2.11) và (2.12). Chỉ khác ở chỗ là thay thế mức Fermi cơ bản bằng mức Fermi lượng tử. Như vậy cả bốn biểu thức cho nồng độ điện tử tự do và lỗ trống tự do đều sử dụng trong chương trình mô phỏng một chiều AMPS cho cả trường hợp suy biến và không suy biến.
Nồng độ trạng thái định xứ (ND+, NA-, pt, nt)
Chúng ta đã tìm hiểu về các giá trị của n và p của phương trình Poisson. Chúng ta đi tìm hiểu thêm các đại lượng khác của phương trình Poisson với sự góp thêm và phát triển của điện tích.
Nồng độ Donor và nồng độ Acceptor (ND+, NA)
Đầu tiên chúng ta đề cập đến nồng độ điện tích ở các mức pha tạp định xứ. Các mức tạp trong mô hình của chúng tui được hình thành bởi tập hợp các mức rời rạc, tạo nên một dải với một độ rộng nhất định. Trong bất cứ trường hợp pha tạp nào thì tổng điện tích tăng lên trong các trạng đều được xác định bởi các biểu thức sau:
Nồng độ donor:
(2.15)
Nồng độ acceptor:
(2.16)
Trong đó:
: Là tổng nồng độ điện tích ở các mức donor rời rạc
: Là tổng nồng độ điện tích ở các mức acceptor rời rạc
: Là tổng nồng độ điện tích phát sinh ở mức donor liên tục
: Là tổng nồng độ điện tích phát sinh từ mức acceptor
Mức pha tạp rời rạc (,)
Hình 4: Đồ thị biểu diễn sự phụ thuộc của các mức năng lượng pha tạp rời rạc vào mật độ trạng thái
Điện tích sinh ra từ trạng thái donor và acceptor rời rạc thứ i và thứ j là:
(2.17)
(2.18)
Trong trạng thái cân bằng nhiệt động hàm xác suất fD,i và fA,j đặc trưng bởi hàm
Fermi:
(2.19)
Và (2.20)
Nồng độ điện tử tự do và nồng độ lỗ trống tự do sẽ là:
(2.21)
(2.22)
Trong trạng thái suy biến thì nồng độ điện tử tự do sẽ xác định theo hệ số suy biến sẽ là:
(2.23)
Nồng độ lỗ trống tự do :
(2.24)
Mức pha tạp liên tục (NbD,i, NbA,j)
Các vị trí pha tạp liên tục định xứ ở mộ...