hoai_thu599
New Member
Link tải luận văn miễn phí cho ae Kết Nối
MỤC LỤC
MỤC LỤC 1
CHƯƠNG 1. TỔNG QUAN VỀ PHÂN CỤM DỮ LIỆU 2
1.1. Phân cụm dữ liệu ? 2
1.2. Bài toán phân cụm 2
1.3. Các kiểu dữ liệu và độ tương tự trong PCDL 2
1.3.1. Phân loại các kiểu dữ liệu dựa trên kích thước miền 2
1.3.2. Phân loại các kiểu dữ liệu dựa trên hệ đo 2
1.3.3. Độ tương tự và phi tương tự 2
1.4. Các ứng dụng của phân cụm dữ liệu 3
CHƯƠNG 2. LÝ THUYẾT MỜ 4
2.1. Tập mờ 4
2.2. Số mờ 4
2.3. Quan hệ mờ 4
CHƯƠNG 3. THUẬT TOÁN PHÂN CỤM DỮ LIỆU VÀ PHÂN CỤM MỜ C-MEANS 6
3.1. Vấn đề phân cụm mờ 6
3.2. Thuật toán K-means 7
3.3. Thuật toán phân cụm mờ C-means (FCM) 8
3.3.1. Xây dựng hàm tiêu chuẩn 8
3.3.2. Thuật toán FCM 9
3.3.3. Ưu nhược điểm của thuật toán FCM 9
3.3.4. Ứng dụng của thuật toán FCM trong phâm cụm Gen chip (Microarray data) 10
CHƯƠNG 4. CÀI ĐẶT THỰC NGHIỆM 12
4.1. Các hàm của chương trình 12
4.2. Các biến của chương trình 12
4.3. Các lệnh thực hiện trong Matlab 13
CHƯƠNG 5. KẾT LUẬN 15
TÀI LIỆU THAM KHẢO 16
CHƯƠNG 1. TỔNG QUAN VỀ PHÂN CỤM DỮ LIỆU
1.1. Phân cụm dữ liệu ?
“PCDL là một kỹ thuật trong Data Mining, nhằm tìm kiếm, phát hiện các cụm, các mẫu dữ liệu tự nhiên tiềm ẩn, quan tâm trong tập dữ liệu lớn. Từ đó cung cấp thông tin tri thức hữu ích để đưa ra quyết định”.
1.2. Bài toán phân cụm
Cho một tập dữ liệu X={X1,X2,…,XN}, phân cụm có nhiệm vụ chia tập X thành K phân hoạch {C1,C2,…,CK} đôi một tách rời.
1.3. Các kiểu dữ liệu và độ tương tự trong PCDL
1.3.1. Phân loại các kiểu dữ liệu dựa trên kích thước miền
• Thuộc tính liên tục (Continuons Attribute)
• Thuộc tính rời rạc (DiscretteAttribute)
• Thuộc tính nhị phân
1.3.2. Phân loại các kiểu dữ liệu dựa trên hệ đo
Giả sử rằng chúng ta có 2 đối tượng x,y và các thuộc tính xi, yi tương ứng với thuộc tính thứ i của chúng. Chúng ta có các lớp kiểu dữ liệu như sau:
• Thuộc tính định danh (Nominal Scale)
• Thuộc tính có thứ tự (Ordinal Scale)
• Thuộc tính khoảng (Interval Scale)
• Thuộc tính tỉ lệ (Ratio Scale)
1.3.3. Độ tương tự và phi tương tự
Khi xác định được các đặc tính của dữ liệu, thì người ta tiến hành xác định “khoảng cách” giữa các đối tượng – hay là độ đo tương tự. Đây là các hàm để đo sự giống nhau giữa các cặp đối tượng dữ liệu, thông thường các hàm này hay là để tính độ tương tự (Similar) hay là tính độ phi tương tự (Dissimilar) giữa các đối tượng dữ liệu. Giá trị của hàm tính độ đo tương tự càng lớn thì sự giống nhau giữa các đối tượng càng lớn và ngược lại, còn hàm tính độ phi tương tự tỉ lệ nghịch với hàm tính độ tương tự.
1.4. Các ứng dụng của phân cụm dữ liệu
Phân cụm dữ liệu là một trong những công cụ chính được ứng dụng trong nhiều lĩnh vực khác nhau như:
• Thương mại
• Sinh học
• Lập quy hoạch đô thị
• Địa lý
• Web Mining
CHƯƠNG 2. LÝ THUYẾT MỜ
2.1. Tập mờ
Định nghĩa:
A là tập mờ trên không gian nền X nếu A được xác định bởi hàm:
µA : X → [0,1]
Trong đó: µA là hàm thuộc.
µA(x) là độ thuộc của x vào tập mờ A
Có thể ký hiệu A = {( µA(x), x ): x Є X}
Việc µA(x) có giá trị bất kỳ trong khoảng [0,1] là điều khác biệt cơ bản giữa tập rõ và tập mờ. Ở tập rõ hàm thuộc chỉ có 2 giá trị:
+ µA(x) = 1 nếu x Є A
+ µA(x) ≠ 0 nếu x A
2.2. Số mờ
Tập mờ M trên tập số thực R1 là một số thực mờ nếu:
+ M chuẩn hóa – tức có điểm x’ sao cho µM (x’) = 1.
+ Ứng với mỗi α Є R1 tập mức {x: µM (x) ≥ α} là đoạn đóng trên R1.
Có 3 dạng số mờ cơ bản:
- Số mờ hình Singleton
- Số mờ hình tam giác
- Số mờ hình thang
2.3. Quan hệ mờ
Định nghĩa 1: Cho 2 không gian nền X,Y.
R là một quan hệ mờ trên X x Y nếu R là một tập mờ trên X x Y, tức có một hàm thuộc µR : X x Y → [0,1]
Trong đó, µR ( x,y ) = R(x,y) là độ thuộc (Membership Degree) của x, y vào quan hệ R.
Do Drive thay đổi chính sách, nên một số link cũ yêu cầu duyệt download. các bạn chỉ cần làm theo hướng dẫn.
Password giải nén nếu cần: ket-noi.com | Bấm trực tiếp vào Link để tải:
MỤC LỤC
MỤC LỤC 1
CHƯƠNG 1. TỔNG QUAN VỀ PHÂN CỤM DỮ LIỆU 2
1.1. Phân cụm dữ liệu ? 2
1.2. Bài toán phân cụm 2
1.3. Các kiểu dữ liệu và độ tương tự trong PCDL 2
1.3.1. Phân loại các kiểu dữ liệu dựa trên kích thước miền 2
1.3.2. Phân loại các kiểu dữ liệu dựa trên hệ đo 2
1.3.3. Độ tương tự và phi tương tự 2
1.4. Các ứng dụng của phân cụm dữ liệu 3
CHƯƠNG 2. LÝ THUYẾT MỜ 4
2.1. Tập mờ 4
2.2. Số mờ 4
2.3. Quan hệ mờ 4
CHƯƠNG 3. THUẬT TOÁN PHÂN CỤM DỮ LIỆU VÀ PHÂN CỤM MỜ C-MEANS 6
3.1. Vấn đề phân cụm mờ 6
3.2. Thuật toán K-means 7
3.3. Thuật toán phân cụm mờ C-means (FCM) 8
3.3.1. Xây dựng hàm tiêu chuẩn 8
3.3.2. Thuật toán FCM 9
3.3.3. Ưu nhược điểm của thuật toán FCM 9
3.3.4. Ứng dụng của thuật toán FCM trong phâm cụm Gen chip (Microarray data) 10
CHƯƠNG 4. CÀI ĐẶT THỰC NGHIỆM 12
4.1. Các hàm của chương trình 12
4.2. Các biến của chương trình 12
4.3. Các lệnh thực hiện trong Matlab 13
CHƯƠNG 5. KẾT LUẬN 15
TÀI LIỆU THAM KHẢO 16
CHƯƠNG 1. TỔNG QUAN VỀ PHÂN CỤM DỮ LIỆU
1.1. Phân cụm dữ liệu ?
“PCDL là một kỹ thuật trong Data Mining, nhằm tìm kiếm, phát hiện các cụm, các mẫu dữ liệu tự nhiên tiềm ẩn, quan tâm trong tập dữ liệu lớn. Từ đó cung cấp thông tin tri thức hữu ích để đưa ra quyết định”.
1.2. Bài toán phân cụm
Cho một tập dữ liệu X={X1,X2,…,XN}, phân cụm có nhiệm vụ chia tập X thành K phân hoạch {C1,C2,…,CK} đôi một tách rời.
1.3. Các kiểu dữ liệu và độ tương tự trong PCDL
1.3.1. Phân loại các kiểu dữ liệu dựa trên kích thước miền
• Thuộc tính liên tục (Continuons Attribute)
• Thuộc tính rời rạc (DiscretteAttribute)
• Thuộc tính nhị phân
1.3.2. Phân loại các kiểu dữ liệu dựa trên hệ đo
Giả sử rằng chúng ta có 2 đối tượng x,y và các thuộc tính xi, yi tương ứng với thuộc tính thứ i của chúng. Chúng ta có các lớp kiểu dữ liệu như sau:
• Thuộc tính định danh (Nominal Scale)
• Thuộc tính có thứ tự (Ordinal Scale)
• Thuộc tính khoảng (Interval Scale)
• Thuộc tính tỉ lệ (Ratio Scale)
1.3.3. Độ tương tự và phi tương tự
Khi xác định được các đặc tính của dữ liệu, thì người ta tiến hành xác định “khoảng cách” giữa các đối tượng – hay là độ đo tương tự. Đây là các hàm để đo sự giống nhau giữa các cặp đối tượng dữ liệu, thông thường các hàm này hay là để tính độ tương tự (Similar) hay là tính độ phi tương tự (Dissimilar) giữa các đối tượng dữ liệu. Giá trị của hàm tính độ đo tương tự càng lớn thì sự giống nhau giữa các đối tượng càng lớn và ngược lại, còn hàm tính độ phi tương tự tỉ lệ nghịch với hàm tính độ tương tự.
1.4. Các ứng dụng của phân cụm dữ liệu
Phân cụm dữ liệu là một trong những công cụ chính được ứng dụng trong nhiều lĩnh vực khác nhau như:
• Thương mại
• Sinh học
• Lập quy hoạch đô thị
• Địa lý
• Web Mining
CHƯƠNG 2. LÝ THUYẾT MỜ
2.1. Tập mờ
Định nghĩa:
A là tập mờ trên không gian nền X nếu A được xác định bởi hàm:
µA : X → [0,1]
Trong đó: µA là hàm thuộc.
µA(x) là độ thuộc của x vào tập mờ A
Có thể ký hiệu A = {( µA(x), x ): x Є X}
Việc µA(x) có giá trị bất kỳ trong khoảng [0,1] là điều khác biệt cơ bản giữa tập rõ và tập mờ. Ở tập rõ hàm thuộc chỉ có 2 giá trị:
+ µA(x) = 1 nếu x Є A
+ µA(x) ≠ 0 nếu x A
2.2. Số mờ
Tập mờ M trên tập số thực R1 là một số thực mờ nếu:
+ M chuẩn hóa – tức có điểm x’ sao cho µM (x’) = 1.
+ Ứng với mỗi α Є R1 tập mức {x: µM (x) ≥ α} là đoạn đóng trên R1.
Có 3 dạng số mờ cơ bản:
- Số mờ hình Singleton
- Số mờ hình tam giác
- Số mờ hình thang
2.3. Quan hệ mờ
Định nghĩa 1: Cho 2 không gian nền X,Y.
R là một quan hệ mờ trên X x Y nếu R là một tập mờ trên X x Y, tức có một hàm thuộc µR : X x Y → [0,1]
Trong đó, µR ( x,y ) = R(x,y) là độ thuộc (Membership Degree) của x, y vào quan hệ R.
Do Drive thay đổi chính sách, nên một số link cũ yêu cầu duyệt download. các bạn chỉ cần làm theo hướng dẫn.
Password giải nén nếu cần: ket-noi.com | Bấm trực tiếp vào Link để tải:
You must be registered for see links
Last edited by a moderator: