Download miễn phí Khóa luận Độ đo Radon và định lý biểu diến Riesz
MỤC LỤC
LỜI NÓI ĐẦU.1
MỤC LỤC.3
CÁC KÝ HIỆU.4
Chương 1. KIẾN THỨC CHUẨN BỊ.5
1. ĐỘ ĐO . 5
1.1. Đại sốtập hợp . 5
1.2. σ- Đại sốtập hợp. 5
1.3. Hàm tập hợp cộng tính . 6
1.4. Độ đo có dấu . 6
1.5. Độ đo dương. 8
1.6. Không gian độ đo . 9
1.7. Độ đo ngoài . 9
2. TÍCH PHÂN LEBESGUE . 12
2.1. Hàm số đo được . 12
2.2. Tích phân Lebesgue . 15
Chương 2. ĐỘ ĐO RADON VÀ ĐỊNH LÝ BIỂU DIỄN RIESZ.24
1. ĐỘ ĐO RADON . 24
1.1. Định nghĩa . 24
1.2. Một sốtính chất của độ đo Radon. 25
2. ĐỊNH LÝ BIỂU DIỄN RIESZ . 32
2.1. Định lý biểu diễn Riesz . 33
2.2. Bổ đề. 35
Chương 3. MỘT ÁP DỤNG CỦA ĐỊNH LÝ BIỂU DIỄN RIESZ.41
1. Định nghĩa . 41
2. Định lý. 41
3. Định lý. 42
KẾT LUẬN.44
PHỤLỤC.45
TÀI LIỆU THAM KHẢO.46
http://cloud.liketly.com/flash/edoc/jh2i1fkjb33wa7b577g9lou48iyvfkz6-swf-2014-01-02-khoa_luan_do_do_radon_va_dinh_ly_bieu_dien_riesz.IQhjZ36MGl.swf /tai-lieu/de-tai-ung-dung-tren-liketly-53445/
Để tải bản Đầy Đủ của tài liệu, xin Trả lời bài viết này, Mods sẽ gửi Link download cho bạn sớm nhất qua hòm tin nhắn.
Ai cần download tài liệu gì mà không tìm thấy ở đây, thì đăng yêu cầu down tại đây nhé:
Nhận download tài liệu miễn phí
Tóm tắt nội dung tài liệu:
Định nghĩa. Cho (X, F, µ ) là một không gian độ đo. Một hàm số f : X →gọi là đo được trên X đối với σ - đại số F nếu:
( ) ( ){ } :a x X f x a∀ ∈ ∈ < ∈ F .
Từ đây về sau khi nói hàm số đo được và không nói gì thêm thì ta hiểu
hàm số đó nhận giá trị trong .
2.1.3. Hàm bậc thang
Định nghĩa. Cho (X, F, µ ) là một không gian độ đo. Một hàm số f : X →
được gọi là hàm bậc thang trên X nếu nó chỉ nhận một số hữu hạn giá trị
1 2, , ..., nα α α .
f là hàm bậc thang đo được trên X nó sẽ được biểu diễn như sau:
f(x) = ( )
1
i
n
i A
i
xα χ
=
∑
Khóa luận tốt nghiệp Nguyễn Thị Anh Đào
GVHD Ths. Phạm Thị Thu Hường Trang 13
với iα ∈ , iA ∈ F, i=1,……n, i jA A∩ =∅ với i j≠ và
1
n
i
i
X A
=
=U
2.1.4. Định lý ( Cấu trúc của hàm số đo được)
Mỗi hàm số f đo được trên X là giới hạn của một dãy hàm bậc thang đo
được fn nhận giá trị trong hội tụ đến f .
Nếu ( ) 0f x ≥ với mọi x X∈ thì có thể chọn các fn để cho ( ) 0;nf x ≥
( ) ( )1 n nf x f x+ ≥ với mọi n và với mọi x X∈
Chứng minh
¾ Giả sử trước hết f(x) 0≥ ta đặt: ( )
( )
( )
khi
1 -1 khi
2 2 2
n
n n n
n f x n
f x i i if x
⎧ ≥⎪= ⎨ − ≤ <⎪⎩
Khi đó:
i) nf là hàm bậc thang, đo được không âm
ii) 1 2 ...f f≤ ≤ và ( ) ( )lim nnf x f x→∞=
Thật vậy, nếu đặt: ( )1:
2 2i n n
i iX x X f x−⎧ ⎫= ∈ ≤ <⎨ ⎬⎩ ⎭ , 1, 2, ..., 2
ni n=
( ){ }2 1 :nnX x X f x n+ = ∈ >
thì iX ( 1, 2, ..., 2 1)
ni n= + là các tập đo được và:
( ) ( ) ( )
2 1
2
1
1
2
n
i nn
n
n X Xn
i
if x x n xχ χ
+=
−= +∑ nghĩa là fn thoả mãn i).
Để chứng tỏ { fn } đơn điệu tăng , ta chú ý:
1 1 1 1
1 2 2 2 1 2 1 2, , ,
2 2 2 2 2 2n n n n n n
i i i i i i
+ + + +
− − − −⎡ ⎞ ⎡ ⎞ ⎡ ⎞= ∪⎟ ⎟ ⎟⎢ ⎢ ⎢⎣ ⎠ ⎣ ⎠ ⎣ ⎠ (*)
Lấy tuỳ ý x X∈ nếu ( )f x n≥ thì ( ) ( )1 1n nf x n n f x+ = + ≥ = còn nếu
( )f x n< thì ắt phải tồn tại 2ni n≤ sao cho: ( )1
2 2n n
i if x− ≤ <
Từ đẳng thức (*) suy ra: ( ) ( )1 12 22n nn
if x f x+ +
−= =
hay ( ) ( )1 12 12n nn
if x f x+ +
−= ≥
Khóa luận tốt nghiệp Nguyễn Thị Anh Đào
GVHD Ths. Phạm Thị Thu Hường Trang 14
Vậy trong mọi trường hợp ta đều có: ( ) ( )1n nf x f x+≤
Ta hãy chứng minh rằng ( ) ( )lim nnf x f x→∞=
Nếu ( )f x < +∞ thì với n đủ lớn f(x) < n, cho nên tồn tại i để:
( )1
2 2n n
i if x− ≤ < , do đó ( ) 1
2n n
if x −=
chứng tỏ rằng: ( ) ( ) ( )1 0
2n n
f x f x n− ≤ → →∞
Nếu ( )f x = +∞ thì ( ) , f x n n≥ ∀ , cho nên ( )nf x n= →∞ .
Vậy trong mọi trường hợp: ( ) ( )nf x f x→ .
¾ Bây giờ giả sử f (x) bất kỳ, ta đặt:
( ) ( ){ }max ; 0f x f x+ = , ( ) ( ){ }max ; 0f x f x− = −
Ta có ( ) ( ) ( )f x f x f x+ −= − , các hàm số , f f+ − đo được không âm, cho
nên theo trên có hai dãy hàm bậc thang đo được nf
+ và nf
− hội tụ tới f + và
f − . Đặt ( ) ( ) ( )n n nf x f x f x+ −= − thì { }nf là dãy hàm bậc thang đo được, và
( ) ( )lim nnf x f x→∞=
2.1.5. Hội tụ hầu khắp nơi
Định nghĩa. Dãy hàm {fn} đo được trên X gọi là hội tụ hầu khắp nơi tới hàm
f nếu tồn tại tập con A X⊆ và ( ) 0Aµ = sao cho: ( ) ( )lim nn f x f x→∞ = với mọi
\x X A∈
2.1.6. Hội tụ theo độ đo
Định nghĩa. Cho f, fn , (n = 1, 2, …) là các hàm đo được trên A ∈ F. Ta nói
rằng dãy hàm { }nf hội tụ theo độ đo µ đến f và ký hiệu nf fµ⎯⎯→ nếu với
mọi số 0ε > ta có: ( ) ( ){ }lim : 0nn x A f x f xµ ε→∞ ∈ − ≥ =
2.1.7. Định lý Egorov
Cho một dãy hàm số nf đo được , hữu hạn hầu khắp nơi và hội tụ hầu
khắp nơi trên một tập đo được A có độ đo ( )Aµ tồn tại
một tập đo được B A⊆ sao cho ( )\A Bµ ε< và dãy nf hội tụ đều trên tập B.
Nói vắn tắt, mọi sự hội tụ trên một tập có độ đo hữu hạn có thể biến thành
hội tụ đều sau khi bỏ đi một tập có độ đo nhỏ tuỳ ý.
Khóa luận tốt nghiệp Nguyễn Thị Anh Đào
GVHD Ths. Phạm Thị Thu Hường Trang 15
Chứng minh
Không giảm tính tổng quát ta có thể giả thiết các ( )nf x hữu hạn khắp nơi
và hội tụ khắp nơi trên A.
Cho ( )f x là giới hạn của dãy ( )nf x . Đặt
( ) ( ) 1:kn i
i n
A x A f x f x
k
∞
=
⎧ ⎫= ∈ − <⎨ ⎬⎩ ⎭U
ta thấy rằng nếu x A∈ thì với mỗi k phải tồn tại một n nào đó để knx A∈ . Vậy
với mọi k
kn
i n
A A
∞
=
=U
Nhưng rõ ràng 1 2 ...
k kA A⊆ ⊆ , cho nên ( ) ( )lim knnA Aµ µ→∞= và với 0ε >
cho trước có thể tìm kn để ( )\ 2kkn kA A εµ < .Khi ấy đặt: 1 kknkB A
∞
=
=I ta có
( )
1
\ \
k
k
n
k
A B A A
∞
=
=U , nên ( ) ( )
1 1
\ \
2k
k
n k
k k
A B A A εµ µ ε∞ ∞
= =
≤ < =∑ ∑
Dễ thấy rằng dãy ( )nf x hội tụ đều trên tập B, vì với mọi k cho trước:
( ) ( ) 1
k
k
n ix B x A f x f x k
∈ ⇒ ∈ ⇒ − < với mọi ki n≥ .
2.2. Tích phân Lebesgue
2.2.1. Tích phân của hàm bậc thang đo được không âm
Định nghĩa. Giả sử (X, F, µ ) là một không gian độ đo và :f X → là hàm
bậc thang đo được không âm. Viết f dưới dạng:
f(x) = ( )
1
i
n
i A
i
xα χ
=
∑
với iα ∈ , iA ∈ F, i=1,……n, i jA A∩ =∅ với i j≠ và
1
n
i
i
X A
=
=U
Ta gọi tổng ( )
1
n
i i
i
a Aµ
=
∑ (*) là tích phân của f (theo độ đo) trên X và ký
hiệu là
X
fdµ∫ hay đơn giản là
X
f∫ khi µ đã cố định.
Khi tổng (*) hữu hạn ta nói f khả tích trên X.
Khóa luận tốt nghiệp Nguyễn Thị Anh Đào
GVHD Ths. Phạm Thị Thu Hường Trang 16
Nhận xét:
Giả sử f có biểu diễn khác:
f(x) = ( )
1
j
m
j B
j
xβ χ
=
∑
với jβ ∈ , jB ∈ F, j =1,……m, i jB B∩ =∅ với i j≠ và
1
n
j
j
X B
=
=U .
Khi đó: ( )
1 1
m m
i i i j i j
j j
A A A A B A B
= =
⎛ ⎞= ∩ = ∩ = ∩⎜ ⎟⎜ ⎟⎝ ⎠U U trong đó các tập i jA B∩
rời nhau nên:
( ) ( )
1 1 1
n n m
i i i i j
i i j
A A Bα µ α µ
= = =
⎡ ⎤= ∩⎢ ⎥⎣ ⎦∑ ∑ ∑ ( )1 1
n m
i i j
i j
A Bα µ
= =
= ∩∑∑
và cũng như thế:
( )
1
m
j j
j
Bβ µ
=
∑ ( )
1 1
m n
j i j
j i
A Bβ µ
= =
= ∩∑∑ .
Mặt khác:
i jα β= nếu i jA B∩ ≠ ∅
Thật vậy trong trường hợp này với 0 i jx A B∈ ∩ ta có ( )0i jf xα β= = .
Do đó: ( )
1
n
i i
i
Aα µ
=
∑ = ( )
1
m
j j
j
Bβ µ
=
∑ .
Vậy tích phân của một hàm bậc thang đo được không âm bao giờ cũng
được xác định một cách duy nhất.
2.2.2. Tích phân của hàm đo được không âm
Định nghĩa. Giả sử :f X +→ là hàm đo được không âm. Ta gọi tích phân
của f trên X mà ký hiệu bởi
X
fdµ∫ là lim nn
X
f dµ→∞ ∫
Ở đây { }nf là một dãy tăng các hàm bậc thang đo được không âm hội tụ
tới f.
Khi
X
fdµ∫ hữu hạn ta nói f khả tích trên X.
Nhận xét
1) ( )
X X X
f g d fd gdµ µ µ+ = +∫ ∫ ∫
với f và g là các hàm đo được không âm trên X.
Khóa luận tốt nghiệp Nguyễn Thị Anh Đào
GVHD Ths. Phạm Thị Thu Hường Trang 17
2)
X X
fd fdα µ α µ=∫ ∫
với mọi 0α > và mọi f đo được không âm trên X
2.2.3. Tích phân của hàm đo được tuỳ ý
Định nghĩa. Giả sử :f X → là hàm đo được tuỳ ý.
Viết f f f+ −= − với { } { }max ,0 , max ,0 .f f f f+ −= = −
đó là các hàm đo được không âm.
Nếu cả hai tích phân
X
f dµ+∫ và
X
f dµ−∫ không đồng thời bằng +∞ , ta có
thể đặt:
X X X
fd f d f dµ µ µ+ −= −∫ ∫ ∫ và gọi là tích phân của f trên X.
Khi cả hai
X
f dµ+∫ và
X
f dµ−∫ đều hữu hạn, f sẽ gọi là khả tích trên X.
2.2.4. Đ