blue_page3006
New Member
Download miễn phí Hướng dẫn ôn tập Xác suất và Thống kê toán
Bài 6.6. Một phường sẽ được coi là làm tốt công tác kế hoạchhóa gia đình nếu tỷ lệ gia đình sinh con thứ 3 là không quá 1%.Vậy tại một phường nếu kiểm tra ngẫu nhiên 900 gia đình thì phải có tối thiểu bao nhiêu gia đình không sinh con thứ 3 thì chúng ta có thể kết luận phường trên làm tốt công tác kế hoạch hóa gia đình mà khả năng không mắc sai lầm là 99%.
Bài 6.7. Nếu cho rằng tỷ lệ cử tri ủng hộ cho ứng cử viên Avà B là như nhau thì khi phỏng vấn 2500 người thì khả năng tỷ lệ ủng hộ A và B khác biệt nhau không quá 4% là bao nhiêu?
Bài 6.8. Theo nhận định của cơ quan quản lý chất lượng thì chỉ có 80% số sản phẩm của cơ sở kinh doanh A là đạt yêu cầu về chất lượng an toàn thực phẩm. Nhân tháng. Kiểm tra ngẫu nhiên 100 sản phẩm của cơ sở kinh doanh tnói trên.
a/ Tính xác suất để trong số các sản phẩm được kiểmtra có không ít hơn 85 sản phẩm đạt yêu cầu.
b/ Nếu 90% số sản phẩm của cơ sở kinh doanh A là đạt yêu cầu về chất lượng thì với xác suất 99% có thể khẳng định trong 100 sản phẩm được kiểm tra sẽ có ít nhất bao nhiêu sản phẩm đạt yêu?
Bài 6.9. Giả sử tỷ lệ người dân thành phố A mua bảo hiểm nhân thọ là 25%.
a/ Tính xác suất để có nhiều hơn 28% số người trongmột mẫu ngẫu nhiên gồm 120 người của thành
phố này có mua bảo hiểm nhân thọ.
b/ Vẫn sử dụng mẫu 120 người ở trên, với xác suất là 0,1 thì tần suất mẫu lớn hơn tỷ lệ của cả tổng
thể một lượng ít nhất là bao nhiêu?
http://cloud.liketly.com/flash/edoc/jh2i1fkjb33wa7b577g9lou48iyvfkz6-swf-2014-01-18-huong_dan_on_tap_xac_suat_va_thong_ke_toan.OvFva34DCc.swf /tai-lieu/de-tai-ung-dung-tren-liketly-55702/
Để tải bản Đầy Đủ của tài liệu, xin Trả lời bài viết này, Mods sẽ gửi Link download cho bạn sớm nhất qua hòm tin nhắn.
Ai cần download tài liệu gì mà không tìm thấy ở đây, thì đăng yêu cầu down tại đây nhé:
Nhận download tài liệu miễn phí
Tóm tắt nội dung tài liệu:
biến ngẫu nhiên X, biết E(X)=0.5b. Tìm quy luật phân bố xác suất của Z = XY ?
Bài 4.4. Có hai loại cổ phiếu A, B ñược bán trên thị trường chứng khoán và lãi suất của chúng là 2 biến
ngẫu nhiên X, Y tương ứng. Giả sử (X, Y) có bảng phân bố xác suất như sau:
Y
X
-2 0 5 10
0 0 0,05 0,05 0,1
4 0,05 0,1 0,25 0,15
6 0,1 0,05 0,1 0
8
a. Nếu ñầu tư toàn bộ vào cổ phiếu A thì lãi suất kỳ vọng và mức ñộ rủi ro là bao nhiêu?
b. Nếu mục tiêu là nhằm ñạt ñược lãi suất kỳ vọng là lớn nhất thì nên ñầu tư vào cả hai loại cổ phiếu
trên theo tỷ lệ nào?
c. Muốn hạn chế rủi ro về lãi suất ñến mức thấp nhất thì nên ñầu tư vào hai loại cổ phiếu trên theo tỷ lệ
nào?
9
Chương VI
Mẫu ngẫu nhiên và các ñặc trưng mẫu
Phân bố xác suất của các ñặc trưng mẫu
1/ Mẫu lấy ra từ tổng thể phân bố chuẩn
1. Nu X ~ N (µ , σ2 )
+ X ~
n
N
2
,
σ
µ → + P( a < X < b ) =
−
Φ−
−
Φ n
a
n
b
σ
µ
σ
µ
00
+ P( | X - µ | < ε) = 2
Φ n
σ
ε
0
2. Nu X1 ~ N(µ1 , σ1
2); X2 ~ N(µ2 , σ2
2)
+ ∑=
n
i
X
n
X
1
1
1
1
1
∑=
n
iX
n
X
1
2
2
2
1
⇒
+−−
2
2
1
1
2
1
2121
,~
nn
NXX
σσ
µµ
+ ( )∑ −−=
n
i
XX
n
S
1
2
1
1
1
2
1
1
1
( )∑ −
−
=
n
i XX
n
S
1
2
22
2
2
2
1
1
( ) ( )
( ) ( )
( )1,1~.
1~
1
1~
1
212
1
2
2
2
2
2
1
2
2
2
2
2
22
1
2
2
1
2
11
−−⇒
−
−
−
−
nnF
S
S
n
Sn
n
Sn
σ
σ
χ
σ
χ
σ
+
∑∑
∑
−−
−−
=
2
2
)()(
))((
YYXX
YYXX
R
ii
ii
XY
YX
MSMS
YXXY −
=
2/ Mẫu lấy ra từ phân bố không-một
2.1. X ~ A(p) và vi n ñ ln (n≥100)
+
n
m
f = ~
−
n
pp
pN
)1(
, ⇒ P( a < f < b ) =
−
−
Φ−
−
−
Φ n
pp
pa
n
pp
pb
)1()1(
00
+ ( )ε<− pfP = 2
−
Φ n
pp )1(
0
ε
2.2. X1 ~ A (p1) , X2 ~ A (p2) và n1 , n2 ñ ln.
+
1
1
1
n
m
f = ;
2
2
2
n
m
f = ⇒
21
ff − ~
−
+
−
−
2
22
1
11
21
)1()1(
,
n
pp
n
pp
ppN
Bài tập mẫu
Bài 6.1. Chiều cao thanh niên của vùng M là biến ngẫu nhiên phân bố chuẩn với µ = 165cm, 2σ = 102
(cm)2. Người ta ño ngẫu nhiên chiều cao của 100 thanh niên vùng ñó.
a. Xác suất ñể chiều cao trung bình của 100 thanh niên ñó sẽ sai lệch so với chiều cao trung bình của
thanh niên vùng M không vượt quá 2cm là bao nhiêu?
b. Khả năng chiều cao trung bình của số thanh niên trên vượt quá 168cm là bao nhiêu?
c. Nếu muốn chiều cao trung bình ño ñược sai lệch so với chiều cao trung bình của tổng thể (của tất cả
10
thanh niên vùng M)không vượt quá 1cm với xác suất (ñộ tin cậy) là 0,99 thì chúng ta phải tiến hành ño
chiều cao của bao nhiêu thanh niên.
d.Với kích thước mẫu là 100 thì ñộ lệch chuẩn mẫu sẽ lớn hơn giá trị thật của nó ít nhất bao nhiêu lần
với xác suất là 0,05.
Bài 6.2. Chiều dài của một loại sản phẩm ñược sản xuất hàng loạt là biến ngẫu nhiên phân phối chuẩn với
µ= 100mm và 2σ = 42 . Kiểm tra ngẫu nhiên 25 sản phẩm. Khả năng chiều dài trung bình của số sản phẩm
kiểm tra nằm trong khoảng từ 98mm ñến 101mm là bao nhiêu?
Bài 6.4. Lô hàng ñạt tiêu chuẩn xuất khẩu nếu tỷ lệ phế phẩm không quá 5%. Giả sử một lô hàng ñạt tiêu
chuẩn xuất khẩu thi khi kiểm tra 100 sản phẩm khả năng có không quá 8 sản phẩm phế phẩm là bao nhiêu?
Bài 6.5. Tỷ lệ người hút thuốc lá ở một khu dân cư là 10%. Với xác suất 0,95 hãy cho biết nếu kiểm tra ngẫu
nhiên 100 người thì sẽ có tối ña bao nhiêu người hút thuốc lá?
Bài tậpcủng cố
Bài 6.6. Một phường sẽ ñược coi là làm tốt công tác kế hoạch hóa gia ñình nếu tỷ lệ gia ñình sinh con thứ 3
là không quá 1%.Vậy tại một phường nếu kiểm tra ngẫu nhiên 900 gia ñình thì phải có tối thiểu bao nhiêu gia
ñình không sinh con thứ 3 thì chúng ta có thể kết luận phường trên làm tốt công tác kế hoạch hóa gia ñình
mà khả năng không mắc sai lầm là 99%.
Bài 6.7. Nếu cho rằng tỷ lệ cử tri ủng hộ cho ứng cử viên A và B là như nhau thì khi phỏng vấn 2500 người
thì khả năng tỷ lệ ủng hộ A và B khác biệt nhau không quá 4% là bao nhiêu?
Bài 6.8. Theo nhận ñịnh của cơ quan quản lý chất lượng thì chỉ có 80% số sản phẩm của cơ sở kinh doanh
A là ñạt yêu cầu về chất lượng an toàn thực phẩm. Nhân tháng. Kiểm tra ngẫu nhiên 100 sản phẩm của cơ
sở kinh doanh tnói trên.
a/ Tính xác suất ñể trong số các sản phẩm ñược kiểm tra có không ít hơn 85 sản phẩm ñạt yêu cầu.
b/ Nếu 90% số sản phẩm của cơ sở kinh doanh A là ñạt yêu cầu về chất lượng thì với xác suất 99% có
thể khẳng ñịnh trong 100 sản phẩm ñược kiểm tra sẽ có ít nhất bao nhiêu sản phẩm ñạt yêu?
Bài 6.9. Giả sử tỷ lệ người dân thành phố A mua bảo hiểm nhân thọ là 25%.
a/ Tính xác suất ñể có nhiều hơn 28% số người trong một mẫu ngẫu nhiên gồm 120 người của thành
phố này có mua bảo hiểm nhân thọ.
b/ Vẫn sử dụng mẫu 120 người ở trên, với xác suất là 0,1 thì tần suất mẫu lớn hơn tỷ lệ của cả tổng
thể một lượng ít nhất là bao nhiêu?
Bài 6.10. Trọng lượng của một bao ñường là biến ngẫu nhiên phân bố chuẩn với trọng lượng tiêu chuẩn là
50 kg và ñộ lệch chuẩn là 0,5 kg. Kiểm tra ngẫu nhiên 100 bao.
a/ Khả năng trọng lượng trung bình của 100 bao ñường nói trên ít hơn trọng lượng quy ñịnh ñối với
một bao trên 1 kg bằng bao nhiêu?
b/ Cho biết nếu chọn ngẫu nhiên 2 bao thì xác suất tổng trọng lượng của chúng không ít hơn 99 kg là
bao nhiêu?
11
Chương VII
Ước lượng tham số của quy luật phân bố xác suất
1/ X ~ N(µ,σ2) :
+ Ước lượng tham số µ :
Trường hợp σ2 ñã biết Trường hợp σ2 chưa biết
+<<− )
2/2/
n
uX
n
uX
σ
µ
σ
αα
Khoảng tin cậy tối ña :
n
uX
σ
µ α+≤
Khoảng tin cậy tối thiểu :
n
uX
σ
µ α−≥
( ) ( )
+<<− −−
n
S
tX
n
S
tX
nn 1
2/
1
2/ αα µ
Khoảng tin cậy tối ña : ( )
n
S
tX n 1−+≤ αµ
Khoảng tin cậy tối thiểu : ( )
n
S
tX n 1−−≥ αµ
Xác ñịnh kích thước mẫu n ñể cho IN ≤ Io :
2
0
22
2/
4
I
u
N
σα≥
Xác ñịnh kích thước mẫu lấy thêm m ñể cho
In+m ≤ Io :
2
0
22)1(
2/
)(4
I
st
mn
n−
≥+ α
+Ước lượng tham số σ2 :
Trường hợp µ ñã biết Trường hợp µ chưa biết
−
<<
− − )1()1(
2
2/1
2*
2
2
2/
2*
n
nS
n
nS
αα χ
σ
χ
Khoảng tin cậy tối ña :
)1(2
1
2*
2
−
≤
− n
nS
αχ
σ
Khoảng tin cậy tối thiểu :
)1(2
2*
2
−
≥
n
nS
αχ
σ
−
−
<<
−
−
− )1(
)1(
)1(
)1(
2
2/1
2
2
2
2/
2
n
Sn
n
Sn
αα χ
σ
χ
Khoảng tin cậy tối ña :
)1(
)1(
2
1
2
2
−
−
≤
− n
Sn
αχ
σ
Khoảng tin cậy tối thiểu :
)1(
)1(
2
2
2
−
−
≥
n
Sn
αχ
σ
2/ X ~ A(p) :
ðặt p = P(A)
−
+<<
−
−
n
ff
ufp
n
ff
uf
)1()1(
22
αα
Khoảng tin cậy tối ña :
n
ff
ufp
)1( −
+≤ α
Khoảng tin cậy tối thiểu :
n
ff
ufp
)1( −
−≥ α
Xác ñịnh cỡ m...