vuabongdem113
New Member
Download miễn phí Một vài phương pháp lượng giác hóa ứng dụng trong đại số
I.Các dạng biến đổi đai số sang lượng giác thương găp
1,Dấu hiệu
Đặt x = sin(a) hay cos(a) đk x thuộc [ -1;1]
Đặt x = tan(a) hay cot (a) đk x thuộc R
http://cloud.liketly.com/flash/edoc/jh2i1fkjb33wa7b577g9lou48iyvfkz6-swf-2014-02-25-mot_vai_phuong_phap_luong_giac_hoa_ung_dung_trong.2jvR4kXvUm.swf /tai-lieu/de-tai-ung-dung-tren-liketly-61390/
Để tải bản Đầy Đủ của tài liệu, xin Trả lời bài viết này, Mods sẽ gửi Link download cho bạn sớm nhất qua hòm tin nhắn.
Ai cần download tài liệu gì mà không tìm thấy ở đây, thì đăng yêu cầu down tại đây nhé:
Nhận download tài liệu miễn phí
Tóm tắt nội dung tài liệu:
1Một vài phương pháp lượng giác hóa ứng dụng trong đại số
------------------------------------------------
Một số trường hợp thường gặp
Dạng 1 : Nếu x2 + y2 =1 thì đặt
sin
os
x
y c
với
0;2
Dạng 2 : Nếu x2 + y2 =a2(a>0) thì đặt
sin
os
x a
y ac
với
0;2
Dạng 3 : Nếu
1x
thì đặt
sin , ;
2 2
os , 0;
x
x c
Dạng 4 : Nếu
x m
thì đặt
sin , ;
2 2
os , 0;
x m
x mc
Dạng 5 :Nếu
1x
hay bài toán có chứa 2x 1 thì đặt x= 1
osc
với
3
0; ;
2 2
Dạng 6 :Nếu
x m
hay bài toán có chứa
2 2x m
thì đặt x =
os
m
c
với
3
0; ;
2 2
Dạng 7 :Nếu bài toán không ràng buộc điều kiện biến số và có biểu thức 2x 1 thì đặt
x = tan
với
;
2 2
Dạng 8 : Nếu bài toán không ràng buộc điều kiện biến số và có biểu thức
2 2x m
thì đặt
x = m tan
với
;
2 2
I. chứng minh đẳng thức , bất đẳng thức
Bài 1: Chứng minh rằng với mọi số a, b ta đều có:
2
1
)b1)(a1(
)ab1)(ba(
2
1
22
Giải:
Đặt: a = tg , b = tg với ,
2
;
2
.
2
Khi đó: A =
)tg1)(tg1(
)tgtg1)(tgtg(
)b1)(a1(
)ab1)(ba(
2222
= cos
2 cos2 .
coscos
sinsin
1.
coscos
)sin(
= sin ( + ) . cos ( + ) =
2
1 sin (2 + 2)
Suy ra: A =
2
1 sin (2 + 2)
2
1
Vậy: -
2
1
)b1)(a1(
)ab1)(ba(
22
2
1 (đpcm).
Bài 2:
Chứng minh rằng nếu x < 1 thì với mọi số tự nhiên n lớn hơn 1 ta có:
(1 + x)
n
+ (1 – x)n < 2n (1)
Giải:
Vì x < 1 nên có thể đặt x = cost với t (0; )
và bất đẳng thức (1) được viết thành:
(1 + cos t)
n
+ (1 – cos t)n < 2n (2)
Thay trong (2) 1 + cos t = 2cos
2
2
t và 1 – cost = 2sin2
2
t ta được
2
n
2
t
sin
2
t
cos n2n2
< 2
n
(3)
Bởi vì 0 <
2
t <
2
nên 0 < sin
2
t , cos
2
t < 1 nên chắc chắn:
cos
2n
2
t = n
2
2
t
cos
< cos
2
2
t n > 1. Tương tự ta có:
sin
2n
2
t < sin
2
2
t n > 1. Do đó
2
n
2
t
sin
2
t
cos n2n2
< 2
n
2
t
sin
2
t
cos 22
= 2
n
Vậy bất đẳng thức (3), cũng có nghĩa là bất đẳng thức (1) được chứng minh.
3
Bài 3: Chứng minh rằng từ 4 số thực cho trước ta luôn luôn chọn được hai số x, y trong 4
số đó sao cho:
0
xy1
yx
1 (1)
Giải:
Giả sử 4 số thực cho trước
là a b c d
Đặt a = tgy1, b = tgy2, c = tgy3, d = tgy4 với
-
2
< y1 y2 y3 y4 <
2
< y5 = + y1
Các điểm y1, y2, y3 chia đoạn [y1; y1 + ] thành 4 đoạn [y1; y2], [y2; y3], [y3; y4] , [y4;
y5]. Trong số 4 đoạn này phải có ít nhất một đoạn có độ dài không lớn hơn
4
. Giả sử
0 y2 – y1
4
. Thế thì:
0 tg (y2 – y1) 1 0
ab1
ab
tgytgy1
tgytgy
12
12
1
Đặt x = b, y = a ta được điều cần chứng minh.
Bài 4: Cho x, y > 0 và x + y = 1. Chứng minh:
2
17
y
1
y
x
1
x
2
2
2
2
Giải:
Ta có: x + y =
22 yx
= 1, theo mệnh đề IV thì có một số a với 0 a 2
để
x
= cosa và
y
= sina.
Bất đẳng thức đã cho được viết thành:
acos
1
acos
4
4
+
asin
1
asin
4
4
2
17
Ta có: cos
4
a +
acos
1
4
+ sin
4
a +
asin
1
4
= (cos
4
a + sin
4
a)
acosasin
1
1
44
y1 y2 y3 y4 y5
4
= (1 – 2sin2acos2a)
acosasin
1
1
44
=
a2sin
16
1
2
a2sin
1
4
2
Vì 0 < sin
2
2a 1 nên 1 -
2
a2sin 2
2
1
và 1 +
a2sin
16
4
17. Từ đó suy ra điều cần chứng minh.
Bài 5: Chứng minh với mọi cặp số thực x, y ta luôn có:
x
2
+ (x – y)2 4
22 yx
sin
2
10
.
Giải:
Theo cách tính giá trị biểu thức lượng giác không dùng bảng ta có:
4sin
2
10
= 2
2
53
5
cos1
.
Bất đẳng thức đã cho có thể viết:
x
2
+ (x – y)2 (x2 + y2)
2
53 (1)
Nếu y = 0 bất đẳng thức (1) hiển nhiên đúng.
Nếu y 0. Chia hai vế (1) cho y2 và đặt
y
x = tga với
2
< a <
2
thì bất đẳng thức
có dạng: tg2a + (tga – 1)2
2
53 (1 + tg
2
a)
sin2a + (sina – cosa)2
2
53
sin2a + 1 – 2sinacosa
2
53
cos2a + 2sin2a
5
a2sin
5
2
a2cos
5
1
1 (2)
5
Bởi vì 22
5
2
5
1
= 1
vì vậy
5
1 = cos và
5
2 = sin. Với 0 < <
2
Bất đẳng thức (2) có thể viết là: cos(2a - ) 1. Điều này hiển nhiên.
Vậy bất đẳng thức đã cho đúng. (đpcm)
Bài 6: Chứng minh rằng với mọi số thực a, b, c thoả mãn điều kiện
a, b > c > 0 ta có bất đẳng thức:
)cb(c)ca(c
ab
(1)
Giải:
Vì a > 0, b > 0,
ab
> 0 nên bất đẳng thức (1) tương đương với
ab
)cb(c
ab
)ca(c
1 (2)
Nhận xét rằng
22
a
ca
a
c
= 1
Nên đặt
a
c = cosu ,
a
ca = sinu với 0 u
2
Ta cũng thấy
22
b
cb
b
c
= 1
Nên đặt
b
c = cosv ,
b
cb = sinv với 0 v
2
.
Khi đó (2) có thể viết thành
a
ca
b
c +
b
cb
a
c = cosv sinu + cosusinv 1 (3)
Bởi vì cosusinv + sinucosv = sin(u + v) 1 nên (3) luôn luôn đúng có nghĩa là (1)
đúng.
Bài 7: Chứng minh rằng: 4 2323 a1a3)a1(a 2
6
Giải:
Điều kiện: 1 – a2 0 a 1
Đặt a = cos, với [0; ]
Khi đó bất đẳng thức được biến đổi về dạng:
4
323 )cos1(cos
- 3(cos -
2cos1
)
2
4(cos3 - sin3) – 3 (cos - sin)
2
(4cos3 - 3cos) + (3sin - 4sin3)
2
cos3 + sin3
2
cos (3 -
2
) 1, luôn đúng.
Bài 8: Chứng minh rằng:
31a 2
2a
Giải:
Điều kiện: a2 – 1 0 a 1.
Đặt a =
cos
1 , với [0 ;
2
).
Khi đó bất đẳng thức được biến đổi về dạng:
cos
2
3tg
cos
2
31
cos
1
2
sin +
3
cos 2
2
1 sin +
2
3 cos 1
sin ( +
3
) 1, luôn đúng.
Bài 9: Cho x
2
+ y
2
= 1 ; u
2
+ v
2
= 1. Chứng minh
a) xu + yv 1.
b) xv + yu 1.
c) –2 (x – y) (u + v) + (x + y) (u – v) 2.
d) –2 (x + y) (u + v) – (x – y) (u – v) 2.
Giải:
Áp dụng mệnh đề IV. Đặt x = cosa ; y = sina ; u = cosb ; v = sinb
và 0 a, b 2. Khi đó
a) xu + yv=cos(a – b) 1.
7
b) xv + yu=sin(a + b) 1.
c) (x – y) (u + v) + (x + y...