Download Tập giải đề thi tuyển sinh vào Lớp 10 môn Toán miễn phí
Cho đường tròn (O;R) đường kính AB. Đường tròn tâm A bán kính AO
cắt đường tròn (O) tại hai điểm C và D. Gọi H là giao điểm của AB và CD.
a) Tính độ dài AH, BH, CD theo R.
b) Gọi K là trung điểm của BC. Chứng minh tứ giác HOKC nội tiếp.
Xác định tâm I của đường tròn ngoại tiếp tứ giác HOKC.
c)Tia CA cắt đường tròn (A) tại điểm thứ hai E khác điểm C. Chứng minh
DK đi qua trung điểm của EB
d)Tính diện tích viên phân cung HOK của đường tròn (I) theo R.
ĐỀ SỐ 01
Bài 1.(2điểm) a) Thực hiện phép tính:
b) Tìm các giá trị của m để hàm số đồng biến.
Bài 2. (2điểm)
a) Giải phương trình :
b) Giải hệ phương trình:
Bài 3. (2điểm)
Cho phương trình ẩn x : (1)
a) Giải phương trình (1) khi m = .
b) Tìm m để phương trình (1) có hai nghiệm dương phân biệt x1 ; x2 thoả
mãn hệ thức
Bài 4. (4điểm)
Cho nửa đường tròn (O; R) đường kính BC. Lấy điểm A trên tia đối của . tia CB. Kẻ tiếp tuyến AF của nửa đường tròn (O) ( với F là tiếp điểm),
tia AF cắt tiếp tuyến Bx của nửa đường tròn tại D. Biết AF = .
a) Chứng minh tứ giác OBDF nội tiếp. Định tâm I đường tròn ngoại tiếp tứ
giác OBDF.
b) Tính Cos .
c) Kẻ OM ^ BC ( M Î AD) . Chứng minh
d) Tính diện tích phần hình tứ giác OBDM ở bên ngoài nửa đường tròn (O)
theo R.
HẾT
TẬP GIẢI ĐỀ THI VÀO LỚP 10
MÔN TOÁN
ĐỀ SỐ 02
Bài 1. ( 2điểm)
Rút gọn các biểu thức sau:
a) b)
Bài 2. ( 1,5điểm)
Giải các phương trình sau:
a) x3 – 5x = 0 b)
Bài 3. (2điểm)
Cho hệ phương trình : ( I )
a) Giải hệ phương trình khi m = 0 .
b) Tìm giá trị của m để hệ (I) có nghiệm ( x; y) thoả mãn hệ thức:
Bài 4. ( 4,5điểm).
Cho tam giác ABC nhọn nội tiếp đường tròn tâm O đường kính AM=2R.
Gọi H là trực tâm tam giác .
a) Chứng minh tứ giác BHCM là hình bình hành.
b) Gọi N là điểm đối xứng của M qua AB. Chứng minh tứ giác AHBN
nội tiếp được trong một đường tròn.
c) Gọi E là điểm đối xứng của M qua AC. Chứng minh ba điểm N,H,E
thẳng hàng.
d) Giả sử AB = R . Tính diện tích phần chung của đưòng tròn (O) và
đường tròn ngoại tiếp tứ giác AHBN.
HẾT
TẬP GIẢI ĐỀ THI VÀO LỚP 10
MÔN TOÁN
ĐỀ SỐ 3
Bài 1. (2,5điểm)
1. Rút gọn các biểu thức :
a) M = b) P =
2. Xác định hệ số a và b của hàm số y = ax + b biết đồ thị hàm số là đường
thẳng song song với đường thẳng y = 2x và đi qua điểm A( 1002;2009).
Bài 2.(2,0điểm)
Cho hàm số y = x2 có đồ thị là Parabol (P) và đường thẳng (d): y = 2x + m .
1. Vẽ (P).
2. Tìm m để (d) cắt (P) tại hai điểm phân biệt A và B.Tính toạ độ giao điểm
của (P) và (d) trong trường hợp m = 3.
Do Drive thay đổi chính sách, nên một số link cũ yêu cầu duyệt download. các bạn chỉ cần làm theo hướng dẫn.
Password giải nén nếu cần: ket-noi.com | Bấm trực tiếp vào Link để tải:
Cho đường tròn (O;R) đường kính AB. Đường tròn tâm A bán kính AO
cắt đường tròn (O) tại hai điểm C và D. Gọi H là giao điểm của AB và CD.
a) Tính độ dài AH, BH, CD theo R.
b) Gọi K là trung điểm của BC. Chứng minh tứ giác HOKC nội tiếp.
Xác định tâm I của đường tròn ngoại tiếp tứ giác HOKC.
c)Tia CA cắt đường tròn (A) tại điểm thứ hai E khác điểm C. Chứng minh
DK đi qua trung điểm của EB
d)Tính diện tích viên phân cung HOK của đường tròn (I) theo R.
ĐỀ SỐ 01
Bài 1.(2điểm) a) Thực hiện phép tính:
b) Tìm các giá trị của m để hàm số đồng biến.
Bài 2. (2điểm)
a) Giải phương trình :
b) Giải hệ phương trình:
Bài 3. (2điểm)
Cho phương trình ẩn x : (1)
a) Giải phương trình (1) khi m = .
b) Tìm m để phương trình (1) có hai nghiệm dương phân biệt x1 ; x2 thoả
mãn hệ thức
Bài 4. (4điểm)
Cho nửa đường tròn (O; R) đường kính BC. Lấy điểm A trên tia đối của . tia CB. Kẻ tiếp tuyến AF của nửa đường tròn (O) ( với F là tiếp điểm),
tia AF cắt tiếp tuyến Bx của nửa đường tròn tại D. Biết AF = .
a) Chứng minh tứ giác OBDF nội tiếp. Định tâm I đường tròn ngoại tiếp tứ
giác OBDF.
b) Tính Cos .
c) Kẻ OM ^ BC ( M Î AD) . Chứng minh
d) Tính diện tích phần hình tứ giác OBDM ở bên ngoài nửa đường tròn (O)
theo R.
HẾT
TẬP GIẢI ĐỀ THI VÀO LỚP 10
MÔN TOÁN
ĐỀ SỐ 02
Bài 1. ( 2điểm)
Rút gọn các biểu thức sau:
a) b)
Bài 2. ( 1,5điểm)
Giải các phương trình sau:
a) x3 – 5x = 0 b)
Bài 3. (2điểm)
Cho hệ phương trình : ( I )
a) Giải hệ phương trình khi m = 0 .
b) Tìm giá trị của m để hệ (I) có nghiệm ( x; y) thoả mãn hệ thức:
Bài 4. ( 4,5điểm).
Cho tam giác ABC nhọn nội tiếp đường tròn tâm O đường kính AM=2R.
Gọi H là trực tâm tam giác .
a) Chứng minh tứ giác BHCM là hình bình hành.
b) Gọi N là điểm đối xứng của M qua AB. Chứng minh tứ giác AHBN
nội tiếp được trong một đường tròn.
c) Gọi E là điểm đối xứng của M qua AC. Chứng minh ba điểm N,H,E
thẳng hàng.
d) Giả sử AB = R . Tính diện tích phần chung của đưòng tròn (O) và
đường tròn ngoại tiếp tứ giác AHBN.
HẾT
TẬP GIẢI ĐỀ THI VÀO LỚP 10
MÔN TOÁN
ĐỀ SỐ 3
Bài 1. (2,5điểm)
1. Rút gọn các biểu thức :
a) M = b) P =
2. Xác định hệ số a và b của hàm số y = ax + b biết đồ thị hàm số là đường
thẳng song song với đường thẳng y = 2x và đi qua điểm A( 1002;2009).
Bài 2.(2,0điểm)
Cho hàm số y = x2 có đồ thị là Parabol (P) và đường thẳng (d): y = 2x + m .
1. Vẽ (P).
2. Tìm m để (d) cắt (P) tại hai điểm phân biệt A và B.Tính toạ độ giao điểm
của (P) và (d) trong trường hợp m = 3.
Do Drive thay đổi chính sách, nên một số link cũ yêu cầu duyệt download. các bạn chỉ cần làm theo hướng dẫn.
Password giải nén nếu cần: ket-noi.com | Bấm trực tiếp vào Link để tải:
You must be registered for see links