sad_daytv9999
New Member
Link tải luận văn miễn phí cho ae Kết Nối
MỞ ĐẦU
Theo xu hướng toàn cầu hóa, các nhà sản xuất các sản phẩm thịt đang phải cạnh tranh gay gắt với nhau. Để giữ vững và nâng cao vị trí của họ, các công ty thực phẩm và thịt cần quan tâm đến sự thay đổi trong thói quen mua sắm và tiêu thụ sản phẩm của người tiêu dùng, cũng như quan điểm và nhu cầu của họ.
Nhu cầu của người tiêu dùng thay đổi liên tục nhưng một vài quan điểm chính không thay đổi. Nhìn chung, người tiêu dùng luôn đòi hỏi chất lượng cao và sự tiện dụng của các sản phẩm thịt, với mùi vị tự nhiên. Bên cạnh đó, họ còn yêu cầu sự an toàn và các sản phẩm phải tự nhiên không bổ sung phụ gia như các chất bảo quản, chất giữ ẩm…
Để đáp ứng tất cả những yêu cầu này mà không làm giảm độ an toàn thực phẩm cần áp dụng các công nghệ mới trong công nghiệp thực phẩm nói chung và trong công nghiệp thịt nói riêng. Hơn nữa, các sản phẩm thịt đóng gói chân không dạng lát mỏng và dạng ướp là những dòng sản phẩm có nhu cầu gia tăng rất cao trong vài năm gần đây. Những sản phẩm này có khả năng nhiễm khuẩn trước khi đóng gói. Vì thế, giải pháp cần thiết là ứng dụng các kỹ thuật mới cho các dòng sản phẩm trên. Hiện nay, một vài công nghệ mới đang được nghiên cứu trong đó áp suất cao là một phương pháp có tiềm năng ứng dụng rất cao.
Áp suất cao là một kỹ thuật rất hứa hẹn đối với các sản phẩm thịt và nó cho thấy tiềm năng trong việc phát triển các dòng sản phẩm mới tiêu thụ ít năng lượng.
1. Lịch sử phát triển:
Giáo sư PW Bridgman (1914), một người tiên phong trong vật lý áp suất cao, báo cáo về albumin lòng trắng trứng và lòng đỏ bị đông tụ dưới áp suất thủy tĩnh cao 500-600 MPa mà không có sự phân rã của lớp vỏ. Điều này cho thấy rằng áp suất thủy tĩnh cao (cao áp) là một công cụ hữu ích cho chế biến thực phẩm thay vì xử lý nhiệt. Tuy nhiên ứng dụng của áp suất cao để chế biến thực phẩm đã gần như bỏ qua cho đến khi sự khởi đầu của dự án "Phát triển áp suất cao lên men sử dụng Dense-Mass" được hỗ trợ bởi Bộ Nông nghiệp, Lâm nghiệp và Thuỷ sản (1989) tại Nhật Bản . Đặc biệt, các nhà khoa học về thịt ở Úc đã tiến hành áp dụng áp suất cao kể từ đầu những năm 1970 (Macfarlane 1973; Bouton, Ford, Harris, Macfarlane, O'Shea 1977). Kể từ khi khởi phát của các dự án tại Nhật Bản, việc áp dụng áp suất cao để chế biến thực phẩm đã thu hút nhiều sự chú ý ở Nhật Bản và Châu Âu bởi vì những thay đổi trong đặc tính của nguyên liệu thực phẩm gây ra bởi áp suất trong các cách khác nhau từ nhiệt (Cheftel 1992 ; Hayashi 1992; Johnston 1995; Knorr 1996). Một số loại thực phẩm được chế biến bằng việc sử dụng áp suất đã có mặt trên thị trường. (Suzuki 2002).
Nhìn chung, áp suất cao sử dụng trong khoảng 100-600 MPa tại nhiệt độ phòng. Áp suất cao làm phá hủy các tế bào sinh dưỡng của vi khuẩn và vô hoạt enzyme, nhưng không làm thay đổi đặc điểm bề ngoài của sản phẩm và giữ lại một số vitamins. Tuy nhiên, khả năng chịu đựng của vi sinh vật rất khác nhau phụ thuộc vào giống và loại thịt được xử lý. Ảnh hưởng của xử lý áp suất cao cũng phụ thuộc vào áp suất sử dụng, nhiệt độ và thời gian. Sử dụng áp suất cao có thể gây ra những biến đổi đặc biệt về cấu trúc của sản phẩm và khả năng này có thể được sử dụng để phát triển một dòng sản phẩm mới hay gia tăng chức năng của một số thành phần nào đó.
Vì thế, để có thể áp dụng kỹ thuật này trên quy mô công nghiệp với các nghiên cứu từ phòng thí nghiệm cần tiến hành: Thiết lập các điều kiện xử lý tốt nhất cho mỗi loại sản phẩm. Kết hợp áp suất cao với các hệ thống đóng gói mới, các chất kháng khuẩn có nguồn gốc tự nhiên, enzyme…
2. Ảnh hưởng của áp suất cao trong công nghiệp thịt
Ảnh hưởng của áp suất cao lên các thành phần dinh dưỡng trong thịt
Thịt là môi trường tốt cho sự phát triển của vi sinh vật, thành phần hóa học của thịt chủ yếu là nước, protein (15-21%), chất béo (0,5-25%), các vitamin (giàu vitamin nhóm B) và các oligonutrient. Theo quan điểm vật lý, khi gia tăng áp suất sẽ có một ảnh hưởng vật lý lên các phân tử làm chúng tiến lại gần nhau hơn dẫn đến sự chuyển pha, sự chuyển pha này có thể đảo ngược lại sau khi giảm áp. Điều này là những gì đã xảy ra với nước và chất béo. Theo quan điểm hóa học, áp suất cao tác động nhẹ hơn so với nhiệt độ. Các liên kết cộng hóa trị không bị phá vỡ nhưng các liên kết yếu như liên kết hydro và liên kết kỵ nước có thể bị biến đổi bất thuận nghịch (Cheftel, 1995).
Ảnh hưởng của áp suất lên nước chủ yếu bao gồm sự giảm nhiệt độ nóng chảy và gia tăng sự ion hóa dẫn đến sự giảm pH. Những biến đổi này là thuận nghịch theo áp suất. Nhưng chúng góp phần làm biến đổi những đặc điểm của sản phẩm được xử lý áp suất cao. Calpastatin bị ức chế tại áp suất từ 200MPa trở lên trong khi calpain bị thoái hóa ở áp suất trên 400MPa.
Tại áp suất thấp hơn 200MPa các lysosome bị phá vỡ, khả năng tự phân gia tăng và thịt mềm hơn. Cathepsin H và aminopeptidase bị vô hoạt ở áp suất từ 200MPa trở lên và cathepsin D bị vô hoạt khi áp suất đạt tới 500MPa (Montero & Gomez-Guillen, 2002). Các vitamin và đường trong thịt không bị biến đổi bởi áp suất cao nhưng các polysaccharide có thể bị biến đổi. Nhìn chung, sự hình thành gel bị ức chế bởi áp suất cao vì áp suất cao có thể biến đổi nhiệt độ chuyển pha từ sol đến gel. Sự đông lại có thể được tạo ra bởi áp suất và sau đó gel tạo thành sẽ mềm và sáng hơn.. Cấu trúc chính của protein bị ảnh hưởng nhẹ bởi áp suất cao, sự biến đổi các liên kết yếu có thể làm biến tính protein hay ngược lại làm hoạt hóa enzyme. Các ảnh hưởng này rất khác nhau phụ thuộc vào loại protein và điều kiện của quá trình xử lý.
Áp suất cao mang lại sự chuyển pha thuận nghịch cho lipid từ lỏng thành rắn dẫn đến sự đông lại. Nếu là một hỗn hợp lipid, áp suất cao có thể tạo ra sự phân tách các pha khác nhau bằng việc phá hủy các tế bào membrane. Cheah và Ledward (1996) cũng nghiên cứu các ảnh hưởng của áp suất về quá trình oxy hóa chất béo trong cơ bắp băm nhỏ. Trên cơ sở dựa vào số đo của acid thiobarbituric (TBA), họ chỉ ra rằng trị giá TBA không tăng trong cơ bắp băm nhỏ tiếp xúc với áp suất cao lên đến 200 MPa, sau đó hơi tăng lên khi áp suất là 300 MPa, và tăng rõ rệt khi 800 MPa. Áp suất cao trên 300 MPa đến 400 MPa sẽ làm giảm myoglobin và oxymyoglobin, Fe2+ myoglobin trở thành Fe3+ metmyoglobin và protein globin bị biến tính., từ đó làm gia tăng quá trình oxy hóa lipid. Ngoài ra, nguyên nhân của sự gia tăng còn có thể do các kim loại trong thịt nằm trong các muối phospholipids hay muối acid hữu cơ với kim loại. Vì thế trong quá trình áp suất cao, các ion kim loại (có thể là Fe và Cu) đã giải thoát ra khỏi các phức chất này và xúc tác phản ứng oxy hóa chất béo. hay sự gia tăng oxy hóa chất béo trong thịt ở áp suất cao có thể do sự thay đổi cấu tạo của hemoprotein làm bộc lộ các nhóm heme xúc tác oxy hóa chất béo. Ngược lại, Orlien và Hansen (2000) đã báo cáo quá trình oxy hóa lipid ở áp suất cao không liên quan đến việc giải phóng các nonheme sắt hay hoạt tính xúc tác của metmyoglobin, nhưng có thể liên quan đến sự phá hủy membrane.
Theo Cheftel và Culioli (1997), sự oxy hóa gây ra bởi áp suất có thể được hạn chế các quá trình công nghệ cho các sản phẩm thịt, bằng cách đóng gói sản phẩm hay sử dụng các chất chống oxy hóa. Loại bỏ oxy hay thêm dioxide carbon (CO2) trước khi xử lý áp suất cao để ngăn chặn quá trình oxy hóa lipid.
Ảnh hưởng của áp suất cao đến độ mềm thịt
Khi một con vật được giết mổ, quá trình co cứng sẽ phát triển trong vòng vài giờ với sự co của các sợi cơ và làm tăng độ nhớt của thịt. Miếng thịt sau đó sẽ mềm nhưng hương vị bị giảm sút đáng kể, và thịt đó thì không phù hợp cho nấu ăn và chế biến vì độ nhớt cao và khả năng giữ nước thấp. Nếu thịt được giữ ở nhiệt độ thấp trong một vài ngày, thịt trở nên mềm mại và giữ trạng thái đó trong vài tuần tiếp theo. Vì vậy, quá trình sử dụng rộng rãi nhất cho thịt với cải tiến của hương vị và mùi được gọi là conditioning và aging.
Nếu những miếng thịt dai, đặt biệt là từ những con động vật già có thể được làm mềm bởi áp suất cao thì áp suất cao có tiềm năng lớn trong việc tận thu nguồn nguyên liệu từ thịt của các con vật già, tránh lãng phí.
Một thử nghiệm để tăng độ mềm của thịt bởi áp suất cao lần đầu tiên được thực hiện bởi Macfarlane (1973) ở Úc. Một điều rất quan trọng là phải lựa chọn thời gian nào của thịt sau khi giết mổ thích hợp cho việc áp dụng áp suất cao.
2.2.1. Ảnh hưởng của áp suất cao lên cơ trước giai đoạn tê cứng:
Macfarlane (1973) đã thực hiện các phép đo khác nhau trên các cơ Biceps femoris tại 100 MPa trong 2-4 phút. Kết quả cho thấy các cơ rút ngắn khoảng 35% so với các cơ không được xử lý áp suất. Tuy nhiên các phép đo lực cắt chỉ ra rằng áp suất làm tăng độ mềm của thịt.
Kết quả nghiên cứu của Macfarlane cho thấy rằng việc sử dụng áp suất cao trong vài phút ở nhiệt độ môi trường đã làm giảm lực cắt lên cơ trước tê. Phương pháp làm tăng độ mềm cho thịt bởi áp suất cao cũng đã được báo cáo trong các tài liệu của Macfarlane (Macfarlane, Mckenzie, Turner, và Jones năm 1981; Macfarlane và Morton 1978) và những người khác (Elgasim và Kennick 1982; Kennick, Elgasim, Holmes, và Meyer 1980; Riffero và Holmes 1983).
2.2.2. Ảnh hưởng của các quá trình xử lý nhiệt và áp suất cao lên cơ sau giai đoạn tê cứng
Mặc dù việc sử dụng áp suất tác động lên cơ trước tê cứng là một cách hiệu quả trong việc xử lý độ dai của thịt. Quá trình còn có tiềm năng áp dụng cho thịt sau tê cứng. Bouton et al. (1977) chứng minh rằng cơ sau tê cứng của trâu, bò sẽ không đạt được biến đổi như vậy khi sử dụng lực cắt tương tự, trừ khi sử dụng áp suất cao ở nhiệt độ cao. Họ nói rằng khi áp suất là 150 MPa ở 60oC trong 30 phút là cần thiết để cải thiện giá trị cắt. Locker và Wild (1984) cũng cho rằng áp suất- nhiệt (PH) có hiệu quả trong việc giữ mềm thịt sau một thời gian đáng kể tại một nhiệt độ cao.
Macfarlane (1985) đã trình bày một đề án bao gồm việc áp suất làm phân giải các protein và mức độ mềm thịt bằng cách kết hợp áp suất với nhiệt độ. Trong đề án của mình, các protein bị phân giải bởi áp suất cao là biến tính và không thể kết hợp bằng cách xử lý nhiệt, kết quả là làm mềm thịt. Việc sử dụng PH thì hiệu quả trong việc khắc phục độ dai. Tuy nhiên, quá trình này có ảnh hưởng không tốt cho thịt do màu nâu tạo ra bởi áp suất và nhiệt.
2.2.3. Cải thiện độ mềm của cơ sau tê cứng bằng cách sử dụng áp suất cao.
Từ góc độ của các ứng dụng thương mại khi sử dụng áp suất cao, độ mềm của cơ sau tê cứng thì quan trọng hơn cơ trước tê cứng. Suzuki, Kim, Honma, Ikeuchi, và Saito (1992) đo độ cứng và độ đàn hồi của cơ bắp vai sau tê cứng thu được từ một con bò sữa già khi sử dụng áp suất cao từ 100-300 MPa trong 5 phút bằng máy Rheo Meter (Fudoh Công ty, Nhật Bản. Kết quả cho thấy không có sự khác biệt đáng kể nào về độ đàn hồi. Điều này cho thấy cơ sau tê cứng có thể được làm mềm bằng áp suất cao mà không cần xử lý nhiệt. Việc sử dụng P-H trong thời gian dài được Macfarlane đề xuất (1985), còn những người khác (Bouton et al 1977;. Riffero và Holmes 1983) thì cho rằng không cần thiết phải kết hợp với nhiệt độ trong việc làm mềm cơ sau tê cứng nếu áp suất sử dụng cao hơn so với trong thí nghiệm.
2.2.4. Cơ chế làm mềm và sự gia tăng những biến đổi của thịt khi sử dụng áp suất cao
Ta biết rằng thịt của con vật sau khi chêt sẽ bị mềm sau một khoảng thời gian nhất định do những thay đổi xảy ra trong cơ, chủ yếu là do tác động của các protease nội sinh:
- Sự suy yếu của tương tác actin-myosin
- Phân mảnh của tơ cơ thành các phân đoạn ngắn do Z-line tan rã
- Sự thoái hóa của các sợi đàn hồi bao gồm connectin (còn gọi là titin)
- Suy yếu của mô liên kết.
Để làm rõ cơ chế gây ra áp suất làm mềm thịt hay việc tăng tốc các biến đổi của thịt, các đối tượng sau đây đã được xem xét:
- Áp suất ảnh hưởng lên tương tác của actin-myosin
- Áp suất ảnh hưởng đến sự phân mảnh của tơ cơ,
- Áp suất ảnh hưởng đến sự chuyển đổi -connectin thành -connectin
- Áp suất ảnh hưởng lên mô liên kết
2.2.4.1. Các ảnh hưởng từ sự tương tác của actin-myosin.
Quá trình tương tác của actin-myosin và cơ cấu của các sợi cơ được biến đổi trong thời gian con vật sau khi chết được minh chứng bằng những thay đổi trong hoạt tính ATPase của tơ cơ. Ouali (1984) báo cáo rằng hoạt tính ATPase gia tăng tại cường độ ion thấp (khoảng dưới 0,2 M KCl), trong khi nó giảm ở những cường độ cao hơn (0,3 M hay cao hơn) khi gia tăng thời gian bảo quản. Ông kết luận rằng giá trị nghiêng (giá trị xác định sự nhạy cảm với cường độ ion) có thể là một thông số chỉ thị chính xác về mức độ lão hóa của cấu trúc các sợi cơ và được thể hiện bằng các chỉ số sinh hóa của Miofibrillar Aging (BIMA).
Nishiwaki, Ikeuchi, và Suzuki (1996) đo hoạt tính của ATPase (cường độ ion là khoảng 0,06-0,32 M KCl) của các cơ được xử lý bằng áp suất cao (30-300 MPa, 5 phút) và ở 4oC trong 7 ngày. Sự thay đổi giá trị BIMA được hiển thị trong hình 8.1. Đối với cơ được xử lý như trên, giá trị BIMA tăng dần với sự gia tăng của thời gian lưu trữ và đạt khoảng 2,5 lần so với các cơ của con vật chết (hình 8,1). Giá trị BIMA của các tơ cơ gia tăng khi tăng áp suất lên 200 MPa và đạt đến mức giống như của các tơ cơ để ở 4oC trong 7 ngày. Tuy nhiên, khi áp suất cao hơn (300 MPa) sẽ làm sụt giảm đáng kể giá trị của BIMA.
Sự thay đổi cấu trúc của các sợi mỏng gây ra bởi áp suất là yếu tố chính ảnh hưởng đến giá trị BIMA thu được trong các sợi cơ khi sử dụng áp suất cao trong một thời gian ngắn (5 phút). Những thay đổi cấu trúc mạnh mẽ được quan sát từ những sợi cơ được xử lý áp suất , những thay đổi đó không quan sát thấy trong các sợi cơ không xử lý bằng áp suất. Kết quả này gợi ý rằng việc áp dụng áp suất cao cho các sợi cơ là nguyên nhân gây ra những thay đổi trong hoạt tính của ATPase và giá trị BIMA của các sợi cơ.
Martino, Otero, Sanz, và Zaritzky (1998) báo cáo rằng lạnh đông có sự hỗ trợ của áp suất cao thì đặc biệt hữu ích cho việc lạnh đông 1 lượng lớn thực phẩm trong khi tinh thể đá được đòi hỏi đồng đều. Trong quá trình lạnh đông dưới áp suất cao, các mẫu được làm lạnh dưới 200 MPa đến -20oC mà không hình thành băng, sau đó áp suất được giảm xuống và đạt tới sự quá lạnh cao (gần 20oC) thúc đẩy sự tạo tinh thể nhanh và đồng đều. Kích thước và vị trí của các tinh thể đá trong miếng thịt lớn (Longissimus dorsi cơ thịt heo) được so sánh giữa phương pháp lạnh đông áp suất cao với phương pháp thổi khí và N2 lỏng. Các mẫu từ bề mặt và trung tâm của cơ đông lạnh được phân tích mô học bằng cách sử dụng một kỹ thuật gián tiếp. Lạnh đông bằng thổi khí, có gradient nhiệt, cho thấy sự phân phối các tinh thể đá không đồng đều. Các mẫu lạnh đông bằng áp suất cao, cả ở bề mặt và tại các vùng trung tâm, cho thấy các tinh thể đá có kích thước nhỏ và tương tự nhau.
Hai điểm sau đây rất quan trọng để ngăn chặn sự suy giảm về chất lượng thịt trong quá trình rã đông của thịt đông lạnh: (a) rút ngắn thời gian rã đông, và (b) rã đông ở nhiệt độ thấp nhất có thể (Massaux, Bera, Steyer, Cindic, và Deroanne 1999a, 1999b). Okamoto và Suzuki (năm 2002) đã so sánh các thông số hóa lý và mô học (thất thoát trong quá trình rã đông, độ mềm, drip, màu sắc, và siêu cấu trúc) của thịt heo được rã đông dưới áp suất cao (100-500 MPa) với thịt được rã đông bằng nước. Họ kết luận rằng các kết quả tốt nhất thu được khi thịt heo đông lạnh được xử lý dưới áp suất khoảng 200 MPa. Zhao, Flores, và Olson (1998) báo cáo rằng rã đông bằng áp suất cao giữ được các đặc tính cảm quan của thịt trâu, bò.
6. Độ rủi ro của quá trình áp suất cao:
Hiện nay chưa có một bài báo nào nói về nhược điểm của áp suất cao. Chỉ biết rằng áp suất cao có thể biến đổi hoạt tính của một vài enzyme và cấu trúc của một số protein. Mặc dù các liên kết cộng hóa trị không bị ảnh hưởng nhưng liên kết hydro, liên kết kỵ nước và tương tác bên trong phân tử có thể bị biến đổi hay bị phá hủy.
Do đó, sự rủi ro của áp suất cao có thể xảy ra. Vì thế cần biên soạn các dữ liệu để có thể làm rõ nhược điểm của áp suất cao về độ độc, khả năng gây dị ứng, giảm sự tiêu hóa và chất lượng dinh dững của thực phẩm.
Khả năng gây dị ứng là mối quan tâm trong việc đánh giá độ an toàn của thực phẩm mới. Phạm vi ảnh hưởng của dị ứng sẽ gia tăng rất nhanh. Trong các sản phẩm được xử lý bằng nhiệt, sự biến tính protein làm giảm khả năng gây dị ứng của nhiều thực phẩm nhưng cũng có thể tạo ra các chất gây dị ứng khác. Hiện nay, cũng có nhiều cuộc nghiên cứu về độ tiêu hóa của sản phẩm qua áp suất cao. Áp suất cao làm các protein thuộc nhóm oligo bị tách ra (Balny, 2001), điều này giúp tiêu hóa tốt hơn. Thực tế trong thí nghiệm, sự tiêu hóa enzyme đã gia tăng trong các protein thịt qua xử lý nhiệt hay áp suất (De Lamballerie-Anton, Delepine, và Chapleau, 2001). Nhiệt hay áp suất tại 200MPa giúp việc tiêu hóa tốt hơn so với tại áp suất 500MPa (cả 2 trường hợp đều ở 10oC trong 10 phút).
Nhiều báo cáo về độ tiêu hóa của các thực phẩm qua xử lý áp suất đã được xuất bản. Kết quả cho thấy không có sự khác nhau về độ tiêu hóa của tinh bột, protein đậu Hà Lan và đậu lupin (Klepacka, Porzucek, Piecyk, và Salanski, 1996; Raabe và Knorr, 1997). Một nhà khoa học khác cho rằng thịt lợn qua áp suất cao cho độ tiêu hóa tốt hơn so với khi không qua xử lý (F. Benomi).
7. Kết luận
Với những gì đã nói trong bài báo cáo này, chúng ta có thể thấy rằng việc sử dụng áp suất cao có một tiềm năng phát triển rất lớn trong tương lai không xa. Hiện nay đã có 1 vài sản phẩm được ứng dụng áp suất cao trên quy mô công nghiệp. Tuy nhiên, mỗi loại sản phẩm có một cách xử lý áp suất riêng nên để có thể ứng dụng áp suất cao ở các sản phẩm đa dạng khác cần có nhiều nghiên cứu sâu hơn nữa về chúng để có thể tối ưu hóa quá trình, tiến tới sản xuất trên quy mô công nghiệp.
Do Drive thay đổi chính sách, nên một số link cũ yêu cầu duyệt download. các bạn chỉ cần làm theo hướng dẫn.
Password giải nén nếu cần: ket-noi.com | Bấm trực tiếp vào Link để tải:
MỞ ĐẦU
Theo xu hướng toàn cầu hóa, các nhà sản xuất các sản phẩm thịt đang phải cạnh tranh gay gắt với nhau. Để giữ vững và nâng cao vị trí của họ, các công ty thực phẩm và thịt cần quan tâm đến sự thay đổi trong thói quen mua sắm và tiêu thụ sản phẩm của người tiêu dùng, cũng như quan điểm và nhu cầu của họ.
Nhu cầu của người tiêu dùng thay đổi liên tục nhưng một vài quan điểm chính không thay đổi. Nhìn chung, người tiêu dùng luôn đòi hỏi chất lượng cao và sự tiện dụng của các sản phẩm thịt, với mùi vị tự nhiên. Bên cạnh đó, họ còn yêu cầu sự an toàn và các sản phẩm phải tự nhiên không bổ sung phụ gia như các chất bảo quản, chất giữ ẩm…
Để đáp ứng tất cả những yêu cầu này mà không làm giảm độ an toàn thực phẩm cần áp dụng các công nghệ mới trong công nghiệp thực phẩm nói chung và trong công nghiệp thịt nói riêng. Hơn nữa, các sản phẩm thịt đóng gói chân không dạng lát mỏng và dạng ướp là những dòng sản phẩm có nhu cầu gia tăng rất cao trong vài năm gần đây. Những sản phẩm này có khả năng nhiễm khuẩn trước khi đóng gói. Vì thế, giải pháp cần thiết là ứng dụng các kỹ thuật mới cho các dòng sản phẩm trên. Hiện nay, một vài công nghệ mới đang được nghiên cứu trong đó áp suất cao là một phương pháp có tiềm năng ứng dụng rất cao.
Áp suất cao là một kỹ thuật rất hứa hẹn đối với các sản phẩm thịt và nó cho thấy tiềm năng trong việc phát triển các dòng sản phẩm mới tiêu thụ ít năng lượng.
1. Lịch sử phát triển:
Giáo sư PW Bridgman (1914), một người tiên phong trong vật lý áp suất cao, báo cáo về albumin lòng trắng trứng và lòng đỏ bị đông tụ dưới áp suất thủy tĩnh cao 500-600 MPa mà không có sự phân rã của lớp vỏ. Điều này cho thấy rằng áp suất thủy tĩnh cao (cao áp) là một công cụ hữu ích cho chế biến thực phẩm thay vì xử lý nhiệt. Tuy nhiên ứng dụng của áp suất cao để chế biến thực phẩm đã gần như bỏ qua cho đến khi sự khởi đầu của dự án "Phát triển áp suất cao lên men sử dụng Dense-Mass" được hỗ trợ bởi Bộ Nông nghiệp, Lâm nghiệp và Thuỷ sản (1989) tại Nhật Bản . Đặc biệt, các nhà khoa học về thịt ở Úc đã tiến hành áp dụng áp suất cao kể từ đầu những năm 1970 (Macfarlane 1973; Bouton, Ford, Harris, Macfarlane, O'Shea 1977). Kể từ khi khởi phát của các dự án tại Nhật Bản, việc áp dụng áp suất cao để chế biến thực phẩm đã thu hút nhiều sự chú ý ở Nhật Bản và Châu Âu bởi vì những thay đổi trong đặc tính của nguyên liệu thực phẩm gây ra bởi áp suất trong các cách khác nhau từ nhiệt (Cheftel 1992 ; Hayashi 1992; Johnston 1995; Knorr 1996). Một số loại thực phẩm được chế biến bằng việc sử dụng áp suất đã có mặt trên thị trường. (Suzuki 2002).
Nhìn chung, áp suất cao sử dụng trong khoảng 100-600 MPa tại nhiệt độ phòng. Áp suất cao làm phá hủy các tế bào sinh dưỡng của vi khuẩn và vô hoạt enzyme, nhưng không làm thay đổi đặc điểm bề ngoài của sản phẩm và giữ lại một số vitamins. Tuy nhiên, khả năng chịu đựng của vi sinh vật rất khác nhau phụ thuộc vào giống và loại thịt được xử lý. Ảnh hưởng của xử lý áp suất cao cũng phụ thuộc vào áp suất sử dụng, nhiệt độ và thời gian. Sử dụng áp suất cao có thể gây ra những biến đổi đặc biệt về cấu trúc của sản phẩm và khả năng này có thể được sử dụng để phát triển một dòng sản phẩm mới hay gia tăng chức năng của một số thành phần nào đó.
Vì thế, để có thể áp dụng kỹ thuật này trên quy mô công nghiệp với các nghiên cứu từ phòng thí nghiệm cần tiến hành: Thiết lập các điều kiện xử lý tốt nhất cho mỗi loại sản phẩm. Kết hợp áp suất cao với các hệ thống đóng gói mới, các chất kháng khuẩn có nguồn gốc tự nhiên, enzyme…
2. Ảnh hưởng của áp suất cao trong công nghiệp thịt
Ảnh hưởng của áp suất cao lên các thành phần dinh dưỡng trong thịt
Thịt là môi trường tốt cho sự phát triển của vi sinh vật, thành phần hóa học của thịt chủ yếu là nước, protein (15-21%), chất béo (0,5-25%), các vitamin (giàu vitamin nhóm B) và các oligonutrient. Theo quan điểm vật lý, khi gia tăng áp suất sẽ có một ảnh hưởng vật lý lên các phân tử làm chúng tiến lại gần nhau hơn dẫn đến sự chuyển pha, sự chuyển pha này có thể đảo ngược lại sau khi giảm áp. Điều này là những gì đã xảy ra với nước và chất béo. Theo quan điểm hóa học, áp suất cao tác động nhẹ hơn so với nhiệt độ. Các liên kết cộng hóa trị không bị phá vỡ nhưng các liên kết yếu như liên kết hydro và liên kết kỵ nước có thể bị biến đổi bất thuận nghịch (Cheftel, 1995).
Ảnh hưởng của áp suất lên nước chủ yếu bao gồm sự giảm nhiệt độ nóng chảy và gia tăng sự ion hóa dẫn đến sự giảm pH. Những biến đổi này là thuận nghịch theo áp suất. Nhưng chúng góp phần làm biến đổi những đặc điểm của sản phẩm được xử lý áp suất cao. Calpastatin bị ức chế tại áp suất từ 200MPa trở lên trong khi calpain bị thoái hóa ở áp suất trên 400MPa.
Tại áp suất thấp hơn 200MPa các lysosome bị phá vỡ, khả năng tự phân gia tăng và thịt mềm hơn. Cathepsin H và aminopeptidase bị vô hoạt ở áp suất từ 200MPa trở lên và cathepsin D bị vô hoạt khi áp suất đạt tới 500MPa (Montero & Gomez-Guillen, 2002). Các vitamin và đường trong thịt không bị biến đổi bởi áp suất cao nhưng các polysaccharide có thể bị biến đổi. Nhìn chung, sự hình thành gel bị ức chế bởi áp suất cao vì áp suất cao có thể biến đổi nhiệt độ chuyển pha từ sol đến gel. Sự đông lại có thể được tạo ra bởi áp suất và sau đó gel tạo thành sẽ mềm và sáng hơn.. Cấu trúc chính của protein bị ảnh hưởng nhẹ bởi áp suất cao, sự biến đổi các liên kết yếu có thể làm biến tính protein hay ngược lại làm hoạt hóa enzyme. Các ảnh hưởng này rất khác nhau phụ thuộc vào loại protein và điều kiện của quá trình xử lý.
Áp suất cao mang lại sự chuyển pha thuận nghịch cho lipid từ lỏng thành rắn dẫn đến sự đông lại. Nếu là một hỗn hợp lipid, áp suất cao có thể tạo ra sự phân tách các pha khác nhau bằng việc phá hủy các tế bào membrane. Cheah và Ledward (1996) cũng nghiên cứu các ảnh hưởng của áp suất về quá trình oxy hóa chất béo trong cơ bắp băm nhỏ. Trên cơ sở dựa vào số đo của acid thiobarbituric (TBA), họ chỉ ra rằng trị giá TBA không tăng trong cơ bắp băm nhỏ tiếp xúc với áp suất cao lên đến 200 MPa, sau đó hơi tăng lên khi áp suất là 300 MPa, và tăng rõ rệt khi 800 MPa. Áp suất cao trên 300 MPa đến 400 MPa sẽ làm giảm myoglobin và oxymyoglobin, Fe2+ myoglobin trở thành Fe3+ metmyoglobin và protein globin bị biến tính., từ đó làm gia tăng quá trình oxy hóa lipid. Ngoài ra, nguyên nhân của sự gia tăng còn có thể do các kim loại trong thịt nằm trong các muối phospholipids hay muối acid hữu cơ với kim loại. Vì thế trong quá trình áp suất cao, các ion kim loại (có thể là Fe và Cu) đã giải thoát ra khỏi các phức chất này và xúc tác phản ứng oxy hóa chất béo. hay sự gia tăng oxy hóa chất béo trong thịt ở áp suất cao có thể do sự thay đổi cấu tạo của hemoprotein làm bộc lộ các nhóm heme xúc tác oxy hóa chất béo. Ngược lại, Orlien và Hansen (2000) đã báo cáo quá trình oxy hóa lipid ở áp suất cao không liên quan đến việc giải phóng các nonheme sắt hay hoạt tính xúc tác của metmyoglobin, nhưng có thể liên quan đến sự phá hủy membrane.
Theo Cheftel và Culioli (1997), sự oxy hóa gây ra bởi áp suất có thể được hạn chế các quá trình công nghệ cho các sản phẩm thịt, bằng cách đóng gói sản phẩm hay sử dụng các chất chống oxy hóa. Loại bỏ oxy hay thêm dioxide carbon (CO2) trước khi xử lý áp suất cao để ngăn chặn quá trình oxy hóa lipid.
Ảnh hưởng của áp suất cao đến độ mềm thịt
Khi một con vật được giết mổ, quá trình co cứng sẽ phát triển trong vòng vài giờ với sự co của các sợi cơ và làm tăng độ nhớt của thịt. Miếng thịt sau đó sẽ mềm nhưng hương vị bị giảm sút đáng kể, và thịt đó thì không phù hợp cho nấu ăn và chế biến vì độ nhớt cao và khả năng giữ nước thấp. Nếu thịt được giữ ở nhiệt độ thấp trong một vài ngày, thịt trở nên mềm mại và giữ trạng thái đó trong vài tuần tiếp theo. Vì vậy, quá trình sử dụng rộng rãi nhất cho thịt với cải tiến của hương vị và mùi được gọi là conditioning và aging.
Nếu những miếng thịt dai, đặt biệt là từ những con động vật già có thể được làm mềm bởi áp suất cao thì áp suất cao có tiềm năng lớn trong việc tận thu nguồn nguyên liệu từ thịt của các con vật già, tránh lãng phí.
Một thử nghiệm để tăng độ mềm của thịt bởi áp suất cao lần đầu tiên được thực hiện bởi Macfarlane (1973) ở Úc. Một điều rất quan trọng là phải lựa chọn thời gian nào của thịt sau khi giết mổ thích hợp cho việc áp dụng áp suất cao.
2.2.1. Ảnh hưởng của áp suất cao lên cơ trước giai đoạn tê cứng:
Macfarlane (1973) đã thực hiện các phép đo khác nhau trên các cơ Biceps femoris tại 100 MPa trong 2-4 phút. Kết quả cho thấy các cơ rút ngắn khoảng 35% so với các cơ không được xử lý áp suất. Tuy nhiên các phép đo lực cắt chỉ ra rằng áp suất làm tăng độ mềm của thịt.
Kết quả nghiên cứu của Macfarlane cho thấy rằng việc sử dụng áp suất cao trong vài phút ở nhiệt độ môi trường đã làm giảm lực cắt lên cơ trước tê. Phương pháp làm tăng độ mềm cho thịt bởi áp suất cao cũng đã được báo cáo trong các tài liệu của Macfarlane (Macfarlane, Mckenzie, Turner, và Jones năm 1981; Macfarlane và Morton 1978) và những người khác (Elgasim và Kennick 1982; Kennick, Elgasim, Holmes, và Meyer 1980; Riffero và Holmes 1983).
2.2.2. Ảnh hưởng của các quá trình xử lý nhiệt và áp suất cao lên cơ sau giai đoạn tê cứng
Mặc dù việc sử dụng áp suất tác động lên cơ trước tê cứng là một cách hiệu quả trong việc xử lý độ dai của thịt. Quá trình còn có tiềm năng áp dụng cho thịt sau tê cứng. Bouton et al. (1977) chứng minh rằng cơ sau tê cứng của trâu, bò sẽ không đạt được biến đổi như vậy khi sử dụng lực cắt tương tự, trừ khi sử dụng áp suất cao ở nhiệt độ cao. Họ nói rằng khi áp suất là 150 MPa ở 60oC trong 30 phút là cần thiết để cải thiện giá trị cắt. Locker và Wild (1984) cũng cho rằng áp suất- nhiệt (PH) có hiệu quả trong việc giữ mềm thịt sau một thời gian đáng kể tại một nhiệt độ cao.
Macfarlane (1985) đã trình bày một đề án bao gồm việc áp suất làm phân giải các protein và mức độ mềm thịt bằng cách kết hợp áp suất với nhiệt độ. Trong đề án của mình, các protein bị phân giải bởi áp suất cao là biến tính và không thể kết hợp bằng cách xử lý nhiệt, kết quả là làm mềm thịt. Việc sử dụng PH thì hiệu quả trong việc khắc phục độ dai. Tuy nhiên, quá trình này có ảnh hưởng không tốt cho thịt do màu nâu tạo ra bởi áp suất và nhiệt.
2.2.3. Cải thiện độ mềm của cơ sau tê cứng bằng cách sử dụng áp suất cao.
Từ góc độ của các ứng dụng thương mại khi sử dụng áp suất cao, độ mềm của cơ sau tê cứng thì quan trọng hơn cơ trước tê cứng. Suzuki, Kim, Honma, Ikeuchi, và Saito (1992) đo độ cứng và độ đàn hồi của cơ bắp vai sau tê cứng thu được từ một con bò sữa già khi sử dụng áp suất cao từ 100-300 MPa trong 5 phút bằng máy Rheo Meter (Fudoh Công ty, Nhật Bản. Kết quả cho thấy không có sự khác biệt đáng kể nào về độ đàn hồi. Điều này cho thấy cơ sau tê cứng có thể được làm mềm bằng áp suất cao mà không cần xử lý nhiệt. Việc sử dụng P-H trong thời gian dài được Macfarlane đề xuất (1985), còn những người khác (Bouton et al 1977;. Riffero và Holmes 1983) thì cho rằng không cần thiết phải kết hợp với nhiệt độ trong việc làm mềm cơ sau tê cứng nếu áp suất sử dụng cao hơn so với trong thí nghiệm.
2.2.4. Cơ chế làm mềm và sự gia tăng những biến đổi của thịt khi sử dụng áp suất cao
Ta biết rằng thịt của con vật sau khi chêt sẽ bị mềm sau một khoảng thời gian nhất định do những thay đổi xảy ra trong cơ, chủ yếu là do tác động của các protease nội sinh:
- Sự suy yếu của tương tác actin-myosin
- Phân mảnh của tơ cơ thành các phân đoạn ngắn do Z-line tan rã
- Sự thoái hóa của các sợi đàn hồi bao gồm connectin (còn gọi là titin)
- Suy yếu của mô liên kết.
Để làm rõ cơ chế gây ra áp suất làm mềm thịt hay việc tăng tốc các biến đổi của thịt, các đối tượng sau đây đã được xem xét:
- Áp suất ảnh hưởng lên tương tác của actin-myosin
- Áp suất ảnh hưởng đến sự phân mảnh của tơ cơ,
- Áp suất ảnh hưởng đến sự chuyển đổi -connectin thành -connectin
- Áp suất ảnh hưởng lên mô liên kết
2.2.4.1. Các ảnh hưởng từ sự tương tác của actin-myosin.
Quá trình tương tác của actin-myosin và cơ cấu của các sợi cơ được biến đổi trong thời gian con vật sau khi chết được minh chứng bằng những thay đổi trong hoạt tính ATPase của tơ cơ. Ouali (1984) báo cáo rằng hoạt tính ATPase gia tăng tại cường độ ion thấp (khoảng dưới 0,2 M KCl), trong khi nó giảm ở những cường độ cao hơn (0,3 M hay cao hơn) khi gia tăng thời gian bảo quản. Ông kết luận rằng giá trị nghiêng (giá trị xác định sự nhạy cảm với cường độ ion) có thể là một thông số chỉ thị chính xác về mức độ lão hóa của cấu trúc các sợi cơ và được thể hiện bằng các chỉ số sinh hóa của Miofibrillar Aging (BIMA).
Nishiwaki, Ikeuchi, và Suzuki (1996) đo hoạt tính của ATPase (cường độ ion là khoảng 0,06-0,32 M KCl) của các cơ được xử lý bằng áp suất cao (30-300 MPa, 5 phút) và ở 4oC trong 7 ngày. Sự thay đổi giá trị BIMA được hiển thị trong hình 8.1. Đối với cơ được xử lý như trên, giá trị BIMA tăng dần với sự gia tăng của thời gian lưu trữ và đạt khoảng 2,5 lần so với các cơ của con vật chết (hình 8,1). Giá trị BIMA của các tơ cơ gia tăng khi tăng áp suất lên 200 MPa và đạt đến mức giống như của các tơ cơ để ở 4oC trong 7 ngày. Tuy nhiên, khi áp suất cao hơn (300 MPa) sẽ làm sụt giảm đáng kể giá trị của BIMA.
Sự thay đổi cấu trúc của các sợi mỏng gây ra bởi áp suất là yếu tố chính ảnh hưởng đến giá trị BIMA thu được trong các sợi cơ khi sử dụng áp suất cao trong một thời gian ngắn (5 phút). Những thay đổi cấu trúc mạnh mẽ được quan sát từ những sợi cơ được xử lý áp suất , những thay đổi đó không quan sát thấy trong các sợi cơ không xử lý bằng áp suất. Kết quả này gợi ý rằng việc áp dụng áp suất cao cho các sợi cơ là nguyên nhân gây ra những thay đổi trong hoạt tính của ATPase và giá trị BIMA của các sợi cơ.
Martino, Otero, Sanz, và Zaritzky (1998) báo cáo rằng lạnh đông có sự hỗ trợ của áp suất cao thì đặc biệt hữu ích cho việc lạnh đông 1 lượng lớn thực phẩm trong khi tinh thể đá được đòi hỏi đồng đều. Trong quá trình lạnh đông dưới áp suất cao, các mẫu được làm lạnh dưới 200 MPa đến -20oC mà không hình thành băng, sau đó áp suất được giảm xuống và đạt tới sự quá lạnh cao (gần 20oC) thúc đẩy sự tạo tinh thể nhanh và đồng đều. Kích thước và vị trí của các tinh thể đá trong miếng thịt lớn (Longissimus dorsi cơ thịt heo) được so sánh giữa phương pháp lạnh đông áp suất cao với phương pháp thổi khí và N2 lỏng. Các mẫu từ bề mặt và trung tâm của cơ đông lạnh được phân tích mô học bằng cách sử dụng một kỹ thuật gián tiếp. Lạnh đông bằng thổi khí, có gradient nhiệt, cho thấy sự phân phối các tinh thể đá không đồng đều. Các mẫu lạnh đông bằng áp suất cao, cả ở bề mặt và tại các vùng trung tâm, cho thấy các tinh thể đá có kích thước nhỏ và tương tự nhau.
Hai điểm sau đây rất quan trọng để ngăn chặn sự suy giảm về chất lượng thịt trong quá trình rã đông của thịt đông lạnh: (a) rút ngắn thời gian rã đông, và (b) rã đông ở nhiệt độ thấp nhất có thể (Massaux, Bera, Steyer, Cindic, và Deroanne 1999a, 1999b). Okamoto và Suzuki (năm 2002) đã so sánh các thông số hóa lý và mô học (thất thoát trong quá trình rã đông, độ mềm, drip, màu sắc, và siêu cấu trúc) của thịt heo được rã đông dưới áp suất cao (100-500 MPa) với thịt được rã đông bằng nước. Họ kết luận rằng các kết quả tốt nhất thu được khi thịt heo đông lạnh được xử lý dưới áp suất khoảng 200 MPa. Zhao, Flores, và Olson (1998) báo cáo rằng rã đông bằng áp suất cao giữ được các đặc tính cảm quan của thịt trâu, bò.
6. Độ rủi ro của quá trình áp suất cao:
Hiện nay chưa có một bài báo nào nói về nhược điểm của áp suất cao. Chỉ biết rằng áp suất cao có thể biến đổi hoạt tính của một vài enzyme và cấu trúc của một số protein. Mặc dù các liên kết cộng hóa trị không bị ảnh hưởng nhưng liên kết hydro, liên kết kỵ nước và tương tác bên trong phân tử có thể bị biến đổi hay bị phá hủy.
Do đó, sự rủi ro của áp suất cao có thể xảy ra. Vì thế cần biên soạn các dữ liệu để có thể làm rõ nhược điểm của áp suất cao về độ độc, khả năng gây dị ứng, giảm sự tiêu hóa và chất lượng dinh dững của thực phẩm.
Khả năng gây dị ứng là mối quan tâm trong việc đánh giá độ an toàn của thực phẩm mới. Phạm vi ảnh hưởng của dị ứng sẽ gia tăng rất nhanh. Trong các sản phẩm được xử lý bằng nhiệt, sự biến tính protein làm giảm khả năng gây dị ứng của nhiều thực phẩm nhưng cũng có thể tạo ra các chất gây dị ứng khác. Hiện nay, cũng có nhiều cuộc nghiên cứu về độ tiêu hóa của sản phẩm qua áp suất cao. Áp suất cao làm các protein thuộc nhóm oligo bị tách ra (Balny, 2001), điều này giúp tiêu hóa tốt hơn. Thực tế trong thí nghiệm, sự tiêu hóa enzyme đã gia tăng trong các protein thịt qua xử lý nhiệt hay áp suất (De Lamballerie-Anton, Delepine, và Chapleau, 2001). Nhiệt hay áp suất tại 200MPa giúp việc tiêu hóa tốt hơn so với tại áp suất 500MPa (cả 2 trường hợp đều ở 10oC trong 10 phút).
Nhiều báo cáo về độ tiêu hóa của các thực phẩm qua xử lý áp suất đã được xuất bản. Kết quả cho thấy không có sự khác nhau về độ tiêu hóa của tinh bột, protein đậu Hà Lan và đậu lupin (Klepacka, Porzucek, Piecyk, và Salanski, 1996; Raabe và Knorr, 1997). Một nhà khoa học khác cho rằng thịt lợn qua áp suất cao cho độ tiêu hóa tốt hơn so với khi không qua xử lý (F. Benomi).
7. Kết luận
Với những gì đã nói trong bài báo cáo này, chúng ta có thể thấy rằng việc sử dụng áp suất cao có một tiềm năng phát triển rất lớn trong tương lai không xa. Hiện nay đã có 1 vài sản phẩm được ứng dụng áp suất cao trên quy mô công nghiệp. Tuy nhiên, mỗi loại sản phẩm có một cách xử lý áp suất riêng nên để có thể ứng dụng áp suất cao ở các sản phẩm đa dạng khác cần có nhiều nghiên cứu sâu hơn nữa về chúng để có thể tối ưu hóa quá trình, tiến tới sản xuất trên quy mô công nghiệp.
Do Drive thay đổi chính sách, nên một số link cũ yêu cầu duyệt download. các bạn chỉ cần làm theo hướng dẫn.
Password giải nén nếu cần: ket-noi.com | Bấm trực tiếp vào Link để tải:
You must be registered for see links
Last edited by a moderator: