daomytriduc
New Member
Chuyên đề Tính đơn điệu của hàm số - Ôn thi toán đại học
Dạng 6 : Dùng đơn điệu hàm số đểgiải và biện luận phương trình và bất phương trình .
Chú ý 1 :
Nếu hàm số y = f(x) luôn đơn điệu nghiêm cách trên D ( hay luôn đồng biến hay luôn nghịch biến trên D ) thì sốnghiệm của phương trình : y = f(x) sẽ không nhiều hơn một và f(x) = f(y) khi và chỉ khi x = y
Chú ý 2:
• Nếu hàm số y = f(x) luôn đơn điệu nghiêm cách trên D ( hay luôn đồng biến hay luôn nghịch biến trên D ) và hàm số y = g(x)luôn đơn điệu nghiêm ngoặc ( hay luôn đồng biến hay luôn nghịch biến ) trên D , thì sốnghiệm trên D của phương trình f(x)=g(x) không nhiều hơn một.
• Nếu hàm số y = f(x) có đạo hàm đến cấp n trên D và phương trình f^(k)(x)=0
có m nghiệm, khi đó phương trình f^(k)-1(x)=0 có nhiều nhất là m+1 nghiệm 1 m + nghiệm.
Để tải bản DOC Đầy Đủ thì Trả lời bài viết này, mình sẽ gửi Link download cho
Do đó hàm số nghịch biến trên .
5
2
m+ < − thì < ∀ ∈ ' 0,y x . Do đó hàm số nghịch biến trên .
Nguyễn Phú Khánh – Đà Lạt .
17
5
2
m+ > − thì =' 0y có hai nghiệm ( )< 1 2 1 2,x x x x . Hàm số đồng biến trên
khoảng ( ) 1 2;x x . Trường hợp này không thỏa mãn .
( )3 2 22. ( 2) ( 2) 8 1
3
x
y m m x m x m= + − + + − + −
* Hàm số đã cho xác định trên .
* Ta có 2' ( 2) 2( 2) 8 y m x m x m= + − + + − .
+ 2m = − , khi đó ' 10 0,y x= − ≤ ∀ ∈ ⇒ hàm số luôn nghịch biến trên .
+ 2m ≠ − tam thức 2' ( 2) 2( 2) 8 y m x m x m= + − + + − có ' 10( 2)m∆ = +
*Bảng xét dấu '∆
m −∞ 2− +∞
'∆ − 0 +
2m+ < − thì ' 0y < với mọi x ∈ . Do đó hàm số nghịch biến trên .
2m+ > − thì =' 0y có hai nghiệm ( )< 1 2 1 2,x x x x . Hàm số đồng biến trên
khoảng ( ) 1 2;x x . Trường hợp này không thỏa mãn .
Vậy 2m ≤ − là những giá trị cần tìm.
Bài tập tương tự :
Tìm m để các hàm số sau luôn nghịch biến trên mỗi khoảng xác định .
1. 2
1
m
y x
x
= + +
−
( ) 42. 1 3
2
m
y m x
x
+
= − − −
+
3 213. 1
3
y x m x= − +
4 2 214. 1
4
y mx m x m= − + −
Ví dụ 3 : Tìm a để các hàm số sau luôn đồng biến trên .
3 211. 4 3
3
y x ax x= + + +
( ) ( )2 3 212. 1 1 3 5
3
y a x a x x= − + + + +
Giải :
3 211. 4 3
3
y x ax x= + + +
* Hàm số đã cho xác định trên .
* Ta có 2' 2 4y x ax= + + và có 2' 4a∆ = −
* Bảng xét dấu '∆
Nguyễn Phú Khánh – Đà Lạt .
18
a −∞ 2− 2 +∞
'∆ + 0 − 0 +
+ Nếu 2 2a− với mọi x ∈ . Hàm số y đồng biến trên .
+ Nếu 2a = thì ( )2' 2y x= + , ta có : ' 0 2, ' 0, 2y x y x= ⇔ = − > ≠ − . Hàm
số y đồng biến trên mỗi nửa khoảng ( ; 2−∞ − và )2;− +∞ nên hàm số y đồng
biến trên .
+ Tương tự nếu 2a = − . Hàm số y đồng biến trên .
+ Nếu 2a thì ' 0y = có hai nghiệm phân biệt
1 2
,x x . Giả sử
1 2
x x< . Khi đó hàm số nghịch biến trên khoảng ( )1 2;x x ,đồng biến trên mỗi
khoảng ( )1;x−∞ và ( )2;x +∞ . Do đó 2a không thoả mãn yêu
cầu bài toán .
Vậy hàm số y đồng biến trên khi và chỉ khi 2 2a− ≤ ≤ .
( ) ( )2 3 212. 1 1 3 5
3
y a x a x x= − + + + +
* Hàm số đã cho xác định trên .
* Ta có : ( ) ( )2 2' 1 2 1 3y a x a x= − + + + và có ( )2' 2 2a a∆ = − + +
Hàm số y đồng biến trên khi và chỉ khi ( )' 0, 1y x⇔ ≥ ∀ ∈
+ Xét 2 1 0 1a a− = ⇔ = ±
3
1 ' 4 3 ' 0 1
4
a y x y x a= ⇒ = + ⇒ ≥ ⇔ ≥ − ⇒ = i không thoả yêu cầu bài
toán.
1 ' 3 0 1a y x a= − ⇒ = > ∀ ∈ ⇒ = − i thoả mãn yêu cầu bài toán.
+ Xét 2 1 0 1a a− ≠ ⇔ ≠ ±
* Bảng xét dấu '∆
a −∞ 1− 1 2 +∞
'∆ − 0 + 0 −
+ Nếu 1 2a a thì ' 0y > với mọi x ∈ . Hàm số y đồng biến trên .
+ Nếu 2a = thì ( )2' 3 1y x= + , ta có : ' 0 1, ' 0, 1y x y x= ⇔ = − > ≠ − . Hàm
số y đồng biến trên mỗi nửa khoảng ( ); 1 ` 1;va −∞ − − +∞ nên hàm số y
đồng biến trên .
Nguyễn Phú Khánh – Đà Lạt .
19
+ Nếu 1 2, 1a a− < < ≠ thì ' 0y = có hai nghiệm phân biệt
1 2
,x x . Giả sử
1 2
x x< . Khi đó hàm số nghịch biến trên khoảng ( )1 2;x x ,đồng biến trên mỗi
khoảng ( )1;x−∞ và ( )2;x +∞ . Do đó 1 2, 1a a− < < ≠ không thoả mãn yêu cầu
bài toán .
Do đó hàm số y đồng biến trên khi và chỉ khi 1 2a a< − ∨ ≥ .
Vậy với 1 2a≤ ≤ thì hàm số y đồng biến trên .
Bài tập tương tự :
Tìm m để các hàm số sau luôn đồng biến trên mỗi khoảng xác định .
( )3 2 211. 3 1
3 2
m
y x x m x= − + − −
( )3 22. 2 3
3
x
y mx m x= − + + +
( ) ( )3 23. 2 1 4 1
3
x
y m m x x= + − − + −
( ) ( ) ( )3 24. 2 2 3 5 6 2
3
x
y m m x m x= − − − + − +
Chú ý :
Phương pháp:
* Hàm số ( , )y f x m= tăng trên ' 0 ' 0
x
y x min y
∈
⇔ ≥ ∀ ∈ ⇔ ≥
.
* Hàm số ( , )y f x m= giảm trên ' 0 ' 0
x
y x max y
∈
⇔ ≤ ∀ ∈ ⇔ ≤
.
Chú ý:
1) Nếu 2'y ax bx c= + + thì
*
0
0
' 0
0
0
a b
c
y x
a
= =
≥≥ ∀ ∈ ⇔ >
∆ ≤
*
0
0
' 0
0
0
a b
c
y x
a
= =
≤≤ ∀ ∈ ⇔ <
∆ ≤
Nguyễn Phú Khánh – Đà Lạt .
20
2) Hàm đồng biến trên thì nó phải xác định trên .
Nguyễn Phú Khánh – Đà Lạt .
20
Dạng 4 : Hàm số đơn điệu trên tập con của .
Phương pháp:
* Hàm số ( , )y f x m= tăng x I∀ ∈ ' 0 min ' 0
x I
y x I y
∈
⇔ ≥ ∀ ∈ ⇔ ≥ .
* Hàm số ( , )y f x m= giảm ' 0 max ' 0
x I
x I y x I y
∈
∀ ∈ ⇔ ≤ ∀ ∈ ⇔ ≤ .
Ví dụ 1 : Tìm m để các hàm số sau
1.
4mx
y
x m
+
=
+
luôn nghịch biến khoảng ( );1−∞ .
2. ( )3 23 1 4y x x m x m= + + + + nghịch biến trên khoảng ( )1;1− .
Giải :
1. 4mxy
x m
+
=
+
luôn nghịch biến khoảng ( );1−∞ .
* Hàm số đã cho xác định trên khoảng ( );1−∞ .
* Ta có ( )
2
2
4
' ,
m
y x m
x m
−
= ≠ −
+
Hàm số nghịch biến trên khoảng ( );1−∞ khi và chỉ khi ( )( )
' 0, ;1
;1
y x
m
< ∀ ∈ −∞
− ∉ −∞
( )
2 4 0 2 2 2 2
2 1
1 1;1
m m m
m
m mm
− < − < < − < <
⇔ ⇔ ⇔ ⇔ − < ≤ −
− ≥ ≤ −
− ∉ −∞
Vậy : với 2 1m− < ≤ − thì thoả yêu cầu bài toán .
2. ( )3 23 1 4y x x m x m= + + + + nghịch biến trên khoảng ( )1;1− .
* Hàm số đã cho xác định trên khoảng ( )1;1− .
* Ta có : 2' 3 6 1y x x m= + + +
Cách 1 :
Hàm số đã cho nghịch biến trên khoảng ( )1;1− khi và chỉ khi
( )' 0, 1;1y x≤ ∀ ∈ − hay.
Xét hàm số ( ) ( ) ( )23 6 1 , 1;1g x x x x= − + + ∀ ∈ −
( ) ( ) ( )' 6 6 0, 1;1g x x x g x⇒ = − − < ∀ ∈ − ⇒ nghịch biến trên khoảng ( )1;1−
và ( ) ( )
1 1
lim 2, lim 10
x x
g x g x
+ −→− →
= − = −
* Bảng biến thiên.
Nguyễn Phú Khánh – Đà Lạt .
21
x 1− 1
( )'g x −
( )g x
2−
10−
Vậy 10m ≤ − thoả yêu cầu bài toán .
Cách 2 :
( )'' 6 6f x x= +
Nghiệm của phương trình ( )'' 0f x = là 1 1x = − < . Do đó, hàm số đã
cho nghịch biến trên khoảng ( )1;1− khi và chỉ khi ( )
1
lim 10
x
m g x
−→
≤ = − .
Vậy 10m ≤ − thoả yêu cầu bài toán .
Bài tập tự luyện:
Tìm m để các hàm số sau:
1. 1mxy
x m
−
=
−
luôn nghịch biến khoảng ( )2;+∞ .
2. ( )
2
2 3
x m
y
m x m
−
=
+ −
luôn nghịch biến khoảng ( )1;2 .
3.
2 2x m
y
x m
−
=
−
luôn nghịch biến khoảng ( );0−∞ .
4.
( ) 21
3
m x m
y
x m
− +
=
+
luôn nghịch biến khoảng ( )0;1 .
Ví dụ 2 : Tìm m để các hàm số sau
1. 3 22 2 1y x x mx= − + − đồng biến trên khoảng ( )1;+∞ .
2. 3 2 3 2y mx x x m= − + + − đồng biến trên khoảng ( )3;0− .
3. ( ) ( )3 21 2 1 1
3
y mx m x m x m= + − + − + đồng biến trên khoảng ( )2;+∞ .
Giải :
1. 3 22 2 1y x x mx= − + − đồng biến trên khoảng ( )1;+∞ .
* Hàm số đã cho xác định trên khoảng ( )1;+∞ .
* Ta có : 2' 6 4y x x m= − +
Nguyễn Phú Khánh – Đà Lạt .
22
Hàm số đã cho đồng biến trên khoảng ( )1;+∞ khi và chỉ khi
( )' 0, 1;y x≥ ∀ ∈ +∞ ( ) 26 4 , 1g x x x m x⇔ = − ≥ − >
Xét hàm số ( ) 26 4g x x x= − liên tục trên khoảng ( )1;+∞ , ta có
( ) ( )' 12 4 0, 1g x x x g x= − > ∀ > ⇔ đồng biến trên khoảng ( )1;+∞
và ( ) ( ) ( )2
1 1
lim lim 6 4 2, lim
xx x
g x x x g x
+ + →+∞→ →
= − = = +∞
* Bảng biến thiên.
x 1− +∞
( )'g x +
( )g x
+∞
2−
Dựa vào bảng biến thiên suy ra 2 2m m≥ − ⇔ ≥ −
2. 3 2 3 2y mx x x m= − + + − đồng biến trên khoảng ( )3;0− .
* Hàm số đ...
Download Chuyên đề Tính đơn điệu của hàm số - Ôn thi toán đại học miễn phí
Dạng 6 : Dùng đơn điệu hàm số đểgiải và biện luận phương trình và bất phương trình .
Chú ý 1 :
Nếu hàm số y = f(x) luôn đơn điệu nghiêm cách trên D ( hay luôn đồng biến hay luôn nghịch biến trên D ) thì sốnghiệm của phương trình : y = f(x) sẽ không nhiều hơn một và f(x) = f(y) khi và chỉ khi x = y
Chú ý 2:
• Nếu hàm số y = f(x) luôn đơn điệu nghiêm cách trên D ( hay luôn đồng biến hay luôn nghịch biến trên D ) và hàm số y = g(x)luôn đơn điệu nghiêm ngoặc ( hay luôn đồng biến hay luôn nghịch biến ) trên D , thì sốnghiệm trên D của phương trình f(x)=g(x) không nhiều hơn một.
• Nếu hàm số y = f(x) có đạo hàm đến cấp n trên D và phương trình f^(k)(x)=0
có m nghiệm, khi đó phương trình f^(k)-1(x)=0 có nhiều nhất là m+1 nghiệm 1 m + nghiệm.
Để tải bản DOC Đầy Đủ thì Trả lời bài viết này, mình sẽ gửi Link download cho
Tóm tắt nội dung:
≤2' 2 0y x với mọi x ∈ và ' 0y = chỉ tại điểm = 2xDo đó hàm số nghịch biến trên .
5
2
m+ < − thì < ∀ ∈ ' 0,y x . Do đó hàm số nghịch biến trên .
Nguyễn Phú Khánh – Đà Lạt .
17
5
2
m+ > − thì =' 0y có hai nghiệm ( )< 1 2 1 2,x x x x . Hàm số đồng biến trên
khoảng ( ) 1 2;x x . Trường hợp này không thỏa mãn .
( )3 2 22. ( 2) ( 2) 8 1
3
x
y m m x m x m= + − + + − + −
* Hàm số đã cho xác định trên .
* Ta có 2' ( 2) 2( 2) 8 y m x m x m= + − + + − .
+ 2m = − , khi đó ' 10 0,y x= − ≤ ∀ ∈ ⇒ hàm số luôn nghịch biến trên .
+ 2m ≠ − tam thức 2' ( 2) 2( 2) 8 y m x m x m= + − + + − có ' 10( 2)m∆ = +
*Bảng xét dấu '∆
m −∞ 2− +∞
'∆ − 0 +
2m+ < − thì ' 0y < với mọi x ∈ . Do đó hàm số nghịch biến trên .
2m+ > − thì =' 0y có hai nghiệm ( )< 1 2 1 2,x x x x . Hàm số đồng biến trên
khoảng ( ) 1 2;x x . Trường hợp này không thỏa mãn .
Vậy 2m ≤ − là những giá trị cần tìm.
Bài tập tương tự :
Tìm m để các hàm số sau luôn nghịch biến trên mỗi khoảng xác định .
1. 2
1
m
y x
x
= + +
−
( ) 42. 1 3
2
m
y m x
x
+
= − − −
+
3 213. 1
3
y x m x= − +
4 2 214. 1
4
y mx m x m= − + −
Ví dụ 3 : Tìm a để các hàm số sau luôn đồng biến trên .
3 211. 4 3
3
y x ax x= + + +
( ) ( )2 3 212. 1 1 3 5
3
y a x a x x= − + + + +
Giải :
3 211. 4 3
3
y x ax x= + + +
* Hàm số đã cho xác định trên .
* Ta có 2' 2 4y x ax= + + và có 2' 4a∆ = −
* Bảng xét dấu '∆
Nguyễn Phú Khánh – Đà Lạt .
18
a −∞ 2− 2 +∞
'∆ + 0 − 0 +
+ Nếu 2 2a− với mọi x ∈ . Hàm số y đồng biến trên .
+ Nếu 2a = thì ( )2' 2y x= + , ta có : ' 0 2, ' 0, 2y x y x= ⇔ = − > ≠ − . Hàm
số y đồng biến trên mỗi nửa khoảng ( ; 2−∞ − và )2;− +∞ nên hàm số y đồng
biến trên .
+ Tương tự nếu 2a = − . Hàm số y đồng biến trên .
+ Nếu 2a thì ' 0y = có hai nghiệm phân biệt
1 2
,x x . Giả sử
1 2
x x< . Khi đó hàm số nghịch biến trên khoảng ( )1 2;x x ,đồng biến trên mỗi
khoảng ( )1;x−∞ và ( )2;x +∞ . Do đó 2a không thoả mãn yêu
cầu bài toán .
Vậy hàm số y đồng biến trên khi và chỉ khi 2 2a− ≤ ≤ .
( ) ( )2 3 212. 1 1 3 5
3
y a x a x x= − + + + +
* Hàm số đã cho xác định trên .
* Ta có : ( ) ( )2 2' 1 2 1 3y a x a x= − + + + và có ( )2' 2 2a a∆ = − + +
Hàm số y đồng biến trên khi và chỉ khi ( )' 0, 1y x⇔ ≥ ∀ ∈
+ Xét 2 1 0 1a a− = ⇔ = ±
3
1 ' 4 3 ' 0 1
4
a y x y x a= ⇒ = + ⇒ ≥ ⇔ ≥ − ⇒ = i không thoả yêu cầu bài
toán.
1 ' 3 0 1a y x a= − ⇒ = > ∀ ∈ ⇒ = − i thoả mãn yêu cầu bài toán.
+ Xét 2 1 0 1a a− ≠ ⇔ ≠ ±
* Bảng xét dấu '∆
a −∞ 1− 1 2 +∞
'∆ − 0 + 0 −
+ Nếu 1 2a a thì ' 0y > với mọi x ∈ . Hàm số y đồng biến trên .
+ Nếu 2a = thì ( )2' 3 1y x= + , ta có : ' 0 1, ' 0, 1y x y x= ⇔ = − > ≠ − . Hàm
số y đồng biến trên mỗi nửa khoảng ( ); 1 ` 1;va −∞ − − +∞ nên hàm số y
đồng biến trên .
Nguyễn Phú Khánh – Đà Lạt .
19
+ Nếu 1 2, 1a a− < < ≠ thì ' 0y = có hai nghiệm phân biệt
1 2
,x x . Giả sử
1 2
x x< . Khi đó hàm số nghịch biến trên khoảng ( )1 2;x x ,đồng biến trên mỗi
khoảng ( )1;x−∞ và ( )2;x +∞ . Do đó 1 2, 1a a− < < ≠ không thoả mãn yêu cầu
bài toán .
Do đó hàm số y đồng biến trên khi và chỉ khi 1 2a a< − ∨ ≥ .
Vậy với 1 2a≤ ≤ thì hàm số y đồng biến trên .
Bài tập tương tự :
Tìm m để các hàm số sau luôn đồng biến trên mỗi khoảng xác định .
( )3 2 211. 3 1
3 2
m
y x x m x= − + − −
( )3 22. 2 3
3
x
y mx m x= − + + +
( ) ( )3 23. 2 1 4 1
3
x
y m m x x= + − − + −
( ) ( ) ( )3 24. 2 2 3 5 6 2
3
x
y m m x m x= − − − + − +
Chú ý :
Phương pháp:
* Hàm số ( , )y f x m= tăng trên ' 0 ' 0
x
y x min y
∈
⇔ ≥ ∀ ∈ ⇔ ≥
.
* Hàm số ( , )y f x m= giảm trên ' 0 ' 0
x
y x max y
∈
⇔ ≤ ∀ ∈ ⇔ ≤
.
Chú ý:
1) Nếu 2'y ax bx c= + + thì
*
0
0
' 0
0
0
a b
c
y x
a
= =
≥≥ ∀ ∈ ⇔ >
∆ ≤
*
0
0
' 0
0
0
a b
c
y x
a
= =
≤≤ ∀ ∈ ⇔ <
∆ ≤
Nguyễn Phú Khánh – Đà Lạt .
20
2) Hàm đồng biến trên thì nó phải xác định trên .
Nguyễn Phú Khánh – Đà Lạt .
20
Dạng 4 : Hàm số đơn điệu trên tập con của .
Phương pháp:
* Hàm số ( , )y f x m= tăng x I∀ ∈ ' 0 min ' 0
x I
y x I y
∈
⇔ ≥ ∀ ∈ ⇔ ≥ .
* Hàm số ( , )y f x m= giảm ' 0 max ' 0
x I
x I y x I y
∈
∀ ∈ ⇔ ≤ ∀ ∈ ⇔ ≤ .
Ví dụ 1 : Tìm m để các hàm số sau
1.
4mx
y
x m
+
=
+
luôn nghịch biến khoảng ( );1−∞ .
2. ( )3 23 1 4y x x m x m= + + + + nghịch biến trên khoảng ( )1;1− .
Giải :
1. 4mxy
x m
+
=
+
luôn nghịch biến khoảng ( );1−∞ .
* Hàm số đã cho xác định trên khoảng ( );1−∞ .
* Ta có ( )
2
2
4
' ,
m
y x m
x m
−
= ≠ −
+
Hàm số nghịch biến trên khoảng ( );1−∞ khi và chỉ khi ( )( )
' 0, ;1
;1
y x
m
< ∀ ∈ −∞
− ∉ −∞
( )
2 4 0 2 2 2 2
2 1
1 1;1
m m m
m
m mm
− < − < < − < <
⇔ ⇔ ⇔ ⇔ − < ≤ −
− ≥ ≤ −
− ∉ −∞
Vậy : với 2 1m− < ≤ − thì thoả yêu cầu bài toán .
2. ( )3 23 1 4y x x m x m= + + + + nghịch biến trên khoảng ( )1;1− .
* Hàm số đã cho xác định trên khoảng ( )1;1− .
* Ta có : 2' 3 6 1y x x m= + + +
Cách 1 :
Hàm số đã cho nghịch biến trên khoảng ( )1;1− khi và chỉ khi
( )' 0, 1;1y x≤ ∀ ∈ − hay.
Xét hàm số ( ) ( ) ( )23 6 1 , 1;1g x x x x= − + + ∀ ∈ −
( ) ( ) ( )' 6 6 0, 1;1g x x x g x⇒ = − − < ∀ ∈ − ⇒ nghịch biến trên khoảng ( )1;1−
và ( ) ( )
1 1
lim 2, lim 10
x x
g x g x
+ −→− →
= − = −
* Bảng biến thiên.
Nguyễn Phú Khánh – Đà Lạt .
21
x 1− 1
( )'g x −
( )g x
2−
10−
Vậy 10m ≤ − thoả yêu cầu bài toán .
Cách 2 :
( )'' 6 6f x x= +
Nghiệm của phương trình ( )'' 0f x = là 1 1x = − < . Do đó, hàm số đã
cho nghịch biến trên khoảng ( )1;1− khi và chỉ khi ( )
1
lim 10
x
m g x
−→
≤ = − .
Vậy 10m ≤ − thoả yêu cầu bài toán .
Bài tập tự luyện:
Tìm m để các hàm số sau:
1. 1mxy
x m
−
=
−
luôn nghịch biến khoảng ( )2;+∞ .
2. ( )
2
2 3
x m
y
m x m
−
=
+ −
luôn nghịch biến khoảng ( )1;2 .
3.
2 2x m
y
x m
−
=
−
luôn nghịch biến khoảng ( );0−∞ .
4.
( ) 21
3
m x m
y
x m
− +
=
+
luôn nghịch biến khoảng ( )0;1 .
Ví dụ 2 : Tìm m để các hàm số sau
1. 3 22 2 1y x x mx= − + − đồng biến trên khoảng ( )1;+∞ .
2. 3 2 3 2y mx x x m= − + + − đồng biến trên khoảng ( )3;0− .
3. ( ) ( )3 21 2 1 1
3
y mx m x m x m= + − + − + đồng biến trên khoảng ( )2;+∞ .
Giải :
1. 3 22 2 1y x x mx= − + − đồng biến trên khoảng ( )1;+∞ .
* Hàm số đã cho xác định trên khoảng ( )1;+∞ .
* Ta có : 2' 6 4y x x m= − +
Nguyễn Phú Khánh – Đà Lạt .
22
Hàm số đã cho đồng biến trên khoảng ( )1;+∞ khi và chỉ khi
( )' 0, 1;y x≥ ∀ ∈ +∞ ( ) 26 4 , 1g x x x m x⇔ = − ≥ − >
Xét hàm số ( ) 26 4g x x x= − liên tục trên khoảng ( )1;+∞ , ta có
( ) ( )' 12 4 0, 1g x x x g x= − > ∀ > ⇔ đồng biến trên khoảng ( )1;+∞
và ( ) ( ) ( )2
1 1
lim lim 6 4 2, lim
xx x
g x x x g x
+ + →+∞→ →
= − = = +∞
* Bảng biến thiên.
x 1− +∞
( )'g x +
( )g x
+∞
2−
Dựa vào bảng biến thiên suy ra 2 2m m≥ − ⇔ ≥ −
2. 3 2 3 2y mx x x m= − + + − đồng biến trên khoảng ( )3;0− .
* Hàm số đ...